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Abstract

We propose an alternative axiomatization of the model of intertem-

poral utility smoothing suggested by Wakai (2008) without introducing

auxiliary consumption risk.
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1 Introduction

Intertemporal preferences are de�ned on the set of deterministic consumption

sequences. Koopmans (1960) provides axiomatization for the most popular

model, the discounted utility model, on this preference domain. On the other

hand, alternative models of intertemporal preferences are often axiomatized

by introducing consumption risk because the technique that is related to the

expected utility allows us to derive the cardinal utility of a consumption se-

quence.1 For example, Wakai (2008) proposes a model that captures the notion

of intertemporal utility smoothing, a desire to lower volatility in a utility se-

quence, by adopting the Anscombe and Aumann (1963) framework with a

temporal interpretation: preferences are de�ned on the set of sequences whose

outcome at any period is a lottery de�ned over a consumption set. However,

to derive the cardinal utility of a consumption sequence, Wakai (2008) imposes

an unrealistic assumption that the decision maker (DM) consumes lotteries,

not the realization of lotteries, at each period. Therefore, the axiomatization

based on the Anscombe and Aumann (1963) framework is inconsistent with

the sequential nature of the realization of intertemporal consumption risk.2

Given the above problem, the objective of this paper is to axiomatize

Wakai�s (2008) model of intertemporal utility smoothing on the set of de-

terministic consumption sequences without introducing auxiliary consumption

risk. We achieve this goal by deriving a particular form of the aggregator func-

tion in the framework of Koopmans�(1960) recursive utility. In particular, we

1A well-known example is Epstein (1983), who derives a model of the discount factor

that depends on historical consumption.

2To model a dislike of utility variations between adjacent periods, Gilboa (1989) and

Shalev (1997) adopt the same domain as Wakai (2008).
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adopt the method developed by Ghirardato and Marinacci (2001) and Ghi-

rardato, Maccheroni, Marinacci, and Siniscalchi (2003) who derive biseparable

utility on a Savage (1954) domain. Our method also simpli�es their axiomatic

system by focusing on the key idea of intertemporal utility smoothing.

The remainder of the paper presents sets of axioms and representations.

We also provide proofs that show the equivalence between these axioms and

representations.

2 Representation

We consider an in�nite-horizon, discrete-time model, where time varies over

T = f0; 1; 2; :::g = N. The axiomatization exhibited below can be easily

adapted to a �nite-horizon, discrete-time model with a minor modi�cation.

The DM consumes a single perishable good at each period t 2 N = f0; 1; :::g

from a connected and compact set X = [x; x] � R++, where x > x. We denote

a set of deterministic consumption sequences by

Y � f(c0; c1; :::) 2 R1jct 2 X for each t 2 f0; 1; 2; :::gg,

which is endowed with the product topology. Let hcti be a generic element

of Y , where hcti = (c0; c1; :::). Let C be the set of all constant deterministic

consumption sequences, where a generic element of C is denoted by hci� =

(c; c; c; :::). The DM faces the same choice set Y at each time t, and the DM�s

preference ordering on Y , denoted by �, is assumed to be complete, transitive,

continuous, nondegenerate, and independent of time and the payo¤ history.

We �rst assume the following axioms that characterize the recursive utility.

Axiom 1 - Atemporal Preference (AP): For all hcti ; hc0ti 2 Y and x; x0 2

X, (x; hcti) � (x0; hcti) if and only if (x; hc0ti) � (x0; hc0ti).
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Axiom 2 - Stationarity (ST): For all (x; hcti) and (x; hc0ti) 2 X � Y ,

(x; hcti) � (x; hc0ti) if and only if hcti � hc0ti.

Koopmans (1960) introduced these axioms, which are also a part of as-

sumptions that characterize the discounted utility model (AP is the Postulate

(3a) and ST is a combination of Postulate (3b) and Postulate 4). In particular,

AP induces the ordering on X, which is independent of a continuation payo¤

hcti: for x; x0 2 X, x � x0 if and only if (x; hcti) � (x0; hcti), where hcti is any

element in Y .3 Furthermore, ST assumes that the passage of time does not

alter the preference ordering, which induces a dynamically consistent decision

process.

In terms of the relationship between the ordering on X and the ordering

on Y , much of the literature assumes the following form of monotonicity.

Monotonicity: For any hcti ; hc0ti 2 Y , if ct � c0t for all t 2 N, then

hcti � hc0ti. The latter ranking is strict if the former ranking is strict for some

t 2 N.

The following result can be easily derived so that we state it without a

proof.

Lemma 1: Given continuity, Axioms 1 and 2 imply monotonicity.

As shown by Ghirardato and Marinacci (2001, Lemma 29), it follows from

continuity and monotonicity that, for each hcti 2 Y , there exists hxi� 2 C

3The literature regarding risk and uncertainty de�nes the induced ordering on the con-

sumption set X as follows: for x; y 2 X, x � y if and only if hxi� � hyi�, where hxi� and

hyi� are acts that pays x and y at every state, respectively. This de�nition lacks a behavioral

foundation in an intertemporal setting because consuming x at each period is not identical

to consuming x in a single period.
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such that hxi� ' hcti. We call this x a constant equivalent of hcti and refer to

it as ce(hcti).

We aim to provide an axiomatic foundation for the following model of

intertemporal utility smoothing proposed by Wakai (2008)

V (c0; c1; :::) = min
�2[�;�]

f(1� �)u(c0) + �V (c1; c2; :::)g : (1)

Representation (1) is a class of the recursive utility suggested by Koopmans

(1960) and captures intertemporal utility smoothing via the following form of

recursive gain/loss asymmetry: (i) current utility u(c0) becomes a reference

point to evaluate future utility V (c1; c2; :::), where V (c1; c2; :::) is de�ned as the

average utility of future periods, and (ii) the di¤erence between future utility

V (c1; c2; :::) and current utility u(c0) de�nes a gain or a loss, and gains are

discounted more than losses.

To model the recursive gain/loss asymmetry, we must �rst derive asymmet-

ric weights for gains versus losses. Thus, we consider a binary sequence hx : yi,

which is a consumption sequence hcti 2 Y such that ct = x 2 X for t = 0 and

ct = y 2 X for t � 1. Let Yb be the collection of all binary sequences, each ele-

ment of which, as shown above, is either increasing or decreasing. Furthermore,

for hcti ; hc0ti 2 Yb, the mixture of hcti and hc0ti is the binary sequence in Yb,

denoted by hhcti : hc0tii, such that, for each � 2 N, hhcti : hc0tii� = ce(hc� : c0� i).

Thus, by monotonicity, for each � 2 N, c� � hhcti : hc0tii� � c0� if c� � c0� , and

c0� � hhcti : hc0tii� � c� if c0� � c� . Moreover, we also state that hcti and hc0ti

are comonotonic if there are no �; � 0 2 N such that c� � c� 0 and c0� 0 � c0� .

Recursive gain/loss asymmetry implies that comonotonic consumption se-

quences in Yb are evaluated under the same decision weight. To capture this

idea, we adopt the following version of the independence axiom on Yb from Ghi-

rardato and Marinacci (2001), which is suitably modi�ed to �t our framework,
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where fx; yg � z stands for x � z and y � z.

Axiom 3 - Comonotonic Independence for Binary Consumption Se-

quences (CI): For all hx : yi ; hx0 : y0i ; hx00 : y00i 2 Yb that are pairwise

comonotonic, if fx; x0g � x00 and fy; y0g � y00 (or x00 � fx; x0g and y00 �

fy; y0g), then hx : yi � hx0 : y0i implies hhx : yi : hx00 : y00ii � hhx0 : y0i : hx00 : y00ii

and hhx00 : y00i : hx : yii � hhx00 : y00i : hx0 : y0ii.4

CI states that among the comonotonic consumption sequences in Yb satis-

fying the stated condition, the mixture operation does not alter the preference

ordering. The required condition is that the mixture must be taken with

a dominated (or dominating) consumption sequence because such an opera-

tion guarantees that hx : yi ; hx0 : y0i, and a mixture of hx : yi or hx0 : y0i with

hx00 : y00i are all pairwise comonotonic.

The above axiom leads to the following lemma.

Lemma 2: Assume that � satis�es Axioms 1 and 2. Then the following

statements are equivalent.

(i) � satis�es Axiom 3 on Yb.

(ii) There exists a continuous and nontrivial function u : X ! R, real numbers

� and � satisfying 0 < �; � < 1 such that � on Yb is represented by F : Yb ! R,

where

F (hx : yi) �

8<: (1� �)u(x) + �u(y) if x � y

(1� �)u(x) + �u(y) if x � y
: (2)

Moreover, � and � are unique, and u is unique up to a positive a¢ ne transfor-

mation.

4This is a simpli�ed version of the Binary Comonotonic Act Independence axiom used

in Ghirardato and Marinacci (2001).
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Note that (2) does not de�ne a relationship between � and �.

Proof. Let � = f?; f0g;Nnf0g;Ng. In Ghirardato and Marinacci (2001),

a binary sequence hx : yi corresponds to the bet onA, and a mixture hhcti : hc0tii

corresponds to the statewiseA-mixture of hcti and hc0ti, whereA 2 ff0g;Nnf0gg.

Furthermore, because monotonicity holds on a strict ordering, all nonempty

subsets in � satisfy their de�nitions of essential events. Then (2) follows from

Theorem 11 of Ghirardato and Marinacci (2001), which is a class of the Cho-

quet expected utility de�ned on � with a unique set function � : �� ! [0; 1]

satisfying �(?) = 0; �(N) = 1; �(f0g) = (1� �); and �(Nnf0g) = �. �

Now, given the cardinal utility de�ned by (2), for x; y 2 X, consider z 2 X

that satis�es

u(z) =
1

2
u(x) +

1

2
u(y): (3)

The existence of such z is guaranteed because X is connected and u is contin-

uous. Furthermore, Ghirardato et al. (2003) show that

E(x; y) � fz0 2 X jz0 ' z, where z satis�es (3)g

= fz0 2 X jx � z0 � y and hx : yi ' hce(hx : z0i) : ce(hz0 : yi)ig :

Thus, we can elicit the equivalent class of z in X, denoted by E(x; y), without

referring to the utility function u. Denote by 1
2
x � 1

2
y 2 X an element in

E(x; y), and for hcti ; hc0ti 2 Yb, de�ne


1
2
hcti � 1

2
hc0ti
�
2 Yb by�

1

2
hcti �

1

2
hc0ti
�
�

� 1

2
c� �

1

2
c0� for all � 2 N:

The next axiom assumes that the DM is averse to the volatility involved

in utility sequences.

Axiom 4 - Time-Variability Aversion (TVA): For any hcti ; hc0ti 2 Yb, if

hcti ' hc0ti, then


1
2
hcti � 1

2
hc0ti
�
� hcti.
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TVA makes an indi¤erence curve convex in the utility domain, regardless

of the functional form of u. Thus, TVA de�nes utility smoothing, which leads

to � � �.

The following is a stationary and in�nite-horizon version of Wakai�s (2008)

model of utility smoothing.

Proposition 1: The following statements are equivalent.

(i) � satis�es Axioms 1 to 4 on Y .

(ii) There exists a continuous and nontrivial function u : X ! R, a set

[�; �] � R satisfying 0 < � � � < 1, and a nonempty, weak*-closed, and convex

set D, each element of which, b 2 D, is a strictly positive discount function

b : N ! R++, satisfying
1X
t=0

bt = 1 such that: � on Y is represented by

V : Y ! R, where

V (c0; c1; :::) � min
b2D

( 1X
t=0

btu(ct)

)
= min

�2[�;�]
f(1� �)u(c0) + �V (c1; c2; :::)g : (4)

Moreover, �; �; and D are unique, and u is unique up to a positive a¢ ne

transformation. Furthermore, V is continuous on Y , and D is recursively

constructed from [�; �], as shown in Wakai (2008).

Proof. Necessity of the axioms is routine. The proof of su¢ ciency is

divided into three steps.

(Step 1): The real numbers �; � derived in Lemma 2 satisfy 0 < � � � < 1

and (2) is rewritten as follows: for all hcti 2 Yb

F (hcti) = min
�2[�;�]

[(1� �)u(c0) + �u(c1)]: (5)

Representation (2) is a class of the Choquet expected utility. Thus, given

TA, the conclusion follows from Schmeidler (1989). �
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Given (5), de�ne V : Y ! R by

V (hcti) � u(ce(hcti)): (6)

Then, it is clear that V (hcti) = F (hcti) for hcti 2 Yb.

(Step 2): For all hcti 2 Y ,

V (hcti) = min
�2[�;�]

[(1� �)u(c0) + �V ((c1; c2; :::))]: (7)

By ST, hcti ' hc0 : ce((c1; c2; :::))i. Then (5) implies that

V (hcti) = F (hc0 : ce((c1; c2; :::))i) = min
�2[�;�]

[(1� �)u(c0) + �u(ce(c1; c2; :::))]:

The conclusion follows from (6). �

Let � be the ��algebra that consists of all subsets of N. Let B be a

collection of all bounded and real-valued functions on N, where we endow

B with the sup norm. By construction, each element in B is �-measurable.

Furthermore, the dual space of B is denoted by B�, on which we use the

weak� topology. Given (5), by following Wakai (2008), we construct D � B�

as follows: let f�tg11 be a sequence of single-period discount factors, where

�t 2 [�; �] for each t � 1. From f�tg11 , de�ne a sequence f
tg10 by


0 � 1 and 
t � �t
t�1 for t > 0:

Construct b 2 B� from f�tg11 and f
tg10 as follows:

b(a) �
1X
�=0

b�a� for each a 2 B, where bs � 
s � 
s+1 for s � 0: (8)

De�ne a nonempty set D � B� by

D � fb 2 B�jb satis�es (8) for some admissible f�tg11 and f
tg10 g:
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Each element of D is a strictly positive discount function b : N ! R++ such

that
P1

�=0 b� =
P1

�=0(
� � 
�+1) = 
0 = 1; b is also a discrete and countably

additive weighting function on �. In addition, D is closed and compact in B�.

(Step 3): For all hcti 2 Y ,

V (hcti) = min
b2D

( 1X
t=0

btu(ct)

)
: (9)

Moreover, V is continuous on Y .

First, for all hcti 2 Yb, (7) implies (9). For hcti 2 Y , consider two sequences,

fhcnt ig
1
1 and fhcnt ig

1
1 , such that for each n � 1

cnt = ct for t � n and cnt = xu for t > n; and

cnt = ct for t � n and cnt = xl for t > n;

where xu 2 argmaxx2X u(x) and xl 2 argminx2X u(x). By monotonicity, for

each n � 1

V (hcnt i) � V (hcti) � V (hcnt i): (10)

Furthermore, it follows from monotonicity that V (hcnt i) is weakly decreas-

ing and V (hcnt i) is weakly increasing. As both sequences are bounded, each

sequence converges. Let V and V be the limits of V (hcnt i) and V (hcnt i), re-

spectively. Moreover, the repeated application of (7) implies that, for each

n � 1,

V (hcnt i) = min
b2D

( 1X
t=0

btu(c
n
t )

)
� min

b2D

( 1X
t=0

btu(ct)

)

� min
b2D

( 1X
t=0

btu(c
n
t )

)
= V (hcnt i): (11)
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Now, we claim that V =V so that (10) and (11) imply (9). For each n � 1,

let bn be an element in D such that

bn 2 argmin
b2D

( 1X
t=0

btu(c
n
t )

)
;

and let f
n
t
g10 be the sequence that de�nes bn, as shown in (8). By construc-

tion, for any " > 0, there exists T > 0 such that for each t � T


T
t

��u(xu)� u(xl)�� < ": (12)

Moreover, for each n � 1,

V (hcnt i) �
1X
t=0

bnt u(c
n
t ): (13)

Then, given (12) and (13), (8) and (11) imply that, for any " > 0, there exists

T > 0 such that

��V (
cTt �)� V (
cTt �)�� �
�����
1X
t=0

bTt u(c
T
t )� V (



cTt
�
)

����� = 
TT+1 ��u(xu)� u(xl)�� < ";
which proves the claim. Note that the boundedness of X is crucial for this

conclusion.

Finally, becauseX is bounded and Y is adopted with the product topology,

it can be shown by a standard " � � argument that V , de�ned by (9), is

continuous on Y . �
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