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Abstract

Mechanization (or automation) has proceeded continuously since the Industrial Revolution and
seems to have accelerated recently due to the rapid advancement of information technology. This
paper theoretically examines long-run trends of mechanization, shifts of tasks humans perform, and
earnings levels and inequality. Speci�cally, the paper develops a Ricardian model of task assignment
and analyzes how improvements of productivities of machines and an increase in the relative supply
of skilled workers a¤ect task assignment (which factor performs which task), earnings levels and
inequality, and aggregate output. The model succeeds in capturing the great majority of the long-
run trends qualitatively. The paper also explores possible future trends of the variables when
information technology continues to grow rapidly.
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1 Introduction
Mechanization (or automation)� the replacement by machines of humans (and animals) engaged
in production tasks� has proceeded continuously since the Industrial Revolution and seems to
have accelerated recently due to the rapid advancement of information technology. This paper
theoretically examines long-run trends of mechanization, shifts of tasks humans perform, and
earnings levels and inequality. Speci�cally, the paper develops a Ricardian model of task assignment
and analyzes how improvements of productivities of machines and an increase in the relative supply
of skilled workers a¤ect task assignment (which factor performs which task), earnings levels and
inequality, and aggregate output. The model succeeds in capturing the great majority of the
long-run trends qualitatively. The paper also explores possible future trends of the variables when
information technology continues to grow rapidly.

Facts. The long-run trends the paper focuses on are as follows.
Mechanization: During the Industrial Revolution, mechanization progressed in tasks intensive

in manual labor: in manufacturing (particularly, textile and metal working), machines and fac-
tory workers replaced artisans and farmers engaged as a side job; in transportation, railroads and
steamboats supplanted wagons and sailboats; in agriculture, threshing machines and reapers re-
duced labor input.1 During the Second Industrial Revolution (from the second half of the 19th
century to World War I), with the utilization of electric power and internal combustion engines,
mechanization proceeded further in manual tasks: in manufacturing, broader sectors and produc-
tion processes were automated with the introduction of mass production system; a wider range
of tasks were mechanized with tractors in agriculture and with automobiles and trucks in trans-
portation. Some analytical (cognitive) tasks too were automated: tabulating machines substituted
data-processing workers at large organizations. In the post World War II era, especially since the
1970s, analytical tasks in much wider areas have been automated because of the progress of infor-
mation technology: computers replaced clerical workers engaged in information processing tasks;
sensors automated inspection processes in manufacturing and services; and simple troubleshooting
tasks were automated with the construction of databases of known troubles.2

Task shifts: As a result of mechanization, humans have shifted to tasks machines cannot perform
e¢ ciently. The general trend until about the 1960s is the shift from manual tasks to analytical tasks:
initially, humans shifted from manual tasks at farms, cottages, and workshops to manual tasks at
factories and analytical tasks at o¢ ces and factories (associated with clerical, management, and
technical jobs); after mechanization deepened in manufacturing, they shifted from manual tasks at
factories as well as at farms to analytical tasks (Katz and Margo, 2013).3 Since the 1970s, humans
have shifted from routine analytical tasks (e.g., simple information processing tasks performed by
clerks) as well as manual tasks to non-routine analytical tasks (mainly associated with professional
and technical jobs) and non-routine manual tasks in services (e.g., personal care and protective
service), owing to the advancement of information technology (Autor, Levy, and Murnane, 2003;

1Works on the two revolutions by economic historians include Landes (2003) and Mokyr (1985, 1999).
2Case studies of e¤ects of information technology on the workplace include Autor, Levy, and Murnane (2002) on

a commercial bank and Bartel, Ichniowski, and Shaw (2007) on a bulb manufacturing factory.
3Although it has been widely thought that technical change during the 19th century is unskill -biased, Katz and

Margo (2013) show that this is not the case for the U.S.: while the share of middle-skill workers (artisans and
agricultural operators) fell and shares of low-skill workers (unskilled workers and laborers) and high-skill workers
(white collar) rose in manufacturing, for the whole economy, shares of low-skill and middle-skill workers fell and
high-skill workers rose from 1850 to 1910. (Further, the share of middle-skill workers changed little if clerical/sales
workers are classi�ed as middle-skilled.) They also �nd that the same pattern is observed for the whole economy
from 1920 to 1980 and main contributors of the declining share of low-skill workers are farm laborers until around
1950 and unskilled workers and laborers (largely in manufacturing) thereafter.
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Autor, 2019).4 Since the 1990s, due to the large shift from routine analytical tasks, the growth of
middle-wage jobs has been weak relative to both low-wage and high-wage jobs, i.e., job polarization
has been observed (Goos, Manning, and Salomons, 2014; Autor, 2019).

Earnings levels and inequality: Mechanization has a¤ected relative demands for workers of
di¤erent skill levels, thus earnings levels and inequality. In the early stage of industrialization,
earnings of unskilled workers grew very moderately and the inequality between skilled and unskilled
workers enlarged (Feinstein, 1998; Katz and Margo, 2013).5 In later periods, unskilled workers
have bene�ted more from automation, except in the 1980-early 1990s and in the mid-late 2000s
for the U.S. (Autor, 2019), while, as before, the rising inequality has been the norm in economies
with lightly regulated labor markets (such as the U.S.), except in periods of rapid growth of the
relative supply of skilled or educated workers (such as the 1970s) and in the wartime 1940s, when
the inequality fell (Goldin and Katz, 2008).6 Since the 1990s, associated with job polarization,
earnings of workers with skills for middle-wage jobs have fallen relative to earnings of those with
skills for low-wage jobs and those with skills for high-wage jobs at least in the U.S. (Böhm, 2020).7

The model. The model economy is a static small-open competitive economy where three
kinds of factors of production� skilled workers, unskilled workers, and machines� are available.
Each factor is characterized by analytical ability and manual ability. Skilled workers have a higher
level of analytical ability than unskilled workers, while both types of workers have the same level
of manual ability, re�ecting the fact that there is no strong correlation between the two abilities.

The �nal good is produced from a continuum of tasks that are di¤erent in the importance of
analytical ability, a; and the ease of codi�cation (routinization); c; using a Leontief technology.8 In
the real economy, low a and high c tasks are those involving repetitive motions such as assembling
or sorting objects and typical in production jobs; low a and low c tasks are those entailing non-
repetitive motions such as driving vehicles and caring for the elderly and usual in low-wage service
jobs; high a and high c tasks entail simple information processing such as calculation and recording
information and are typical in clerical jobs; and high a and low c tasks involve complex analysis
and judgement mainly associated with management, professional, and technical jobs.

The three factors are perfectly substitutable at each task. Both abilities contribute to pro-
duction at each task (except the most manual and the most analytical tasks), but the relative
contribution of analytical ability is larger in tasks of the greater importance of the ability (higher
a). Among tasks with given a, machines are more productive in tasks of the greater ease of
codi�cation (higher c), while workers�productivities do not depend on c.

4Autor, Levy, and Murnane (2003) examine changes in the composition of tasks in the U.S. from 1960 to 1998
and �nd that the growth of information technology is important in explaining the changes after the 1970s. Autor
(2019) presents changes in occupational composition for 1970�2016.

5Feinstein (1998) �nds that real wages of British manual workers rose very moderately from the 1770s to the
1850s (stagnated until the 1830s), implying a large increase in the disparity with skilled workers. Katz and Margo
(2013) �nd a secular rise in the wage premium for white-collar workers for 1820�80 in the U.S..

6Goldin and Katz (2008) �nd that, after plummeting in the 1940s, the wage premium of college graduates in the
U.S. kept rising except in the 1970s when the relative supply of college graduates grew rapidly. As for the wage
premium of high school graduates, which is a good measure of inequality between skilled and unskilled workers until
the 1940s (judging from a low elasticity of substitution between high school graduates and dropouts), it fell greatly
from 1914 to 1939, when high school enrollment rates rose dramatically (from 20% to over 70%) and in the 1940s.

7Böhm (2020) �nds that task prices (earnings per unit of skill) polarized between 1984�1992 and 2007�2009 in
the U.S.: task prices of middle-wage jobs (such as clerical, sales, and production jobs) fell relative to high-wage jobs
(managerial, professional, and technical jobs) and low-wage jobs (service jobs). Further, he showed that wages of
those with comparative advantages in middle-wage jobs fell compared to wages of those with comparative advantages
in high-wage or low-wage jobs.

8 In this paper, the term codify/routinize means "organize procedures of tasks systematically so that tasks can be
performed by machines after relevant technologies are developed".
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Task assignment, factor prices, task prices, and output of a competitive equilibrium are con-
sidered. Comparative advantages of factors determine task assignment: unskilled (skilled) workers
are assigned to relatively manual (analytical) tasks and machines are assigned to tasks that are
easier to codify. Among tasks a given factor is employed, it is employed intensively in tasks in
which its productivities are low.

Main results. Based on the model, the paper examines how task assignment, earnings levels
and inequality, and output change over time, when analytical and manual abilities of machines and
the relative supply of skilled workers grow exogenously over time.

Section 4 examines a simpler case (many of the results can be derived from a graphical analysis)
in which the two abilities grow proportionately and machines have comparative advantages in rela-
tively manual tasks. The analysis shows that tasks and workers strongly a¤ected by mechanization
and e¤ects of the productivity growth on wage levels and inequality change over time. Mecha-
nization starts from tasks that are highly manual and easy to routinize, and gradually spreads
to tasks that are more analytical and di¢ cult to routinize. Eventually, automation proceeds in
highly analytical tasks previously performed by skilled workers too. Accordingly, unskilled workers
shift to tasks that are more di¢ cult to codify, so do skilled workers in later stages of mechaniza-
tion, and both types shift to more analytical tasks except at the �nal stage. Skilled workers always
bene�t from the productivity growth, whereas the e¤ect on earnings of unskilled workers is ambigu-
ous while mechanization mainly a¤ects them and the e¤ect turns positive afterwards. Earnings
inequality rises except in the �nal stage of mechanization, where it is constant. The output of
the �nal good always increases. In contrast, an increase in the relative supply of skilled workers
raises (lowers) earnings of unskilled (skilled) workers and lowers the inequality, countervailing the
inequality-enhancing e¤ect of productivity growth. (It also raises output.)

The results are consistent with the long-run trends of task shifts, wage levels, and its inequality
described earlier, except the developments of wage levels and inequality in the wartime 1940s during
which institutional factors seem to be important (Goldin and Katz, 2008; Farber et al., 2021), their
developments after the 1980s, and job polarization after the 1990s. However, the assumption that
the two abilities of machines grow proportionately, which makes the analysis relatively simple, is
rather restrictive, considering that the growth of the manual ability of machines was faster than
their analytical ability for most periods of time, while the opposite seems to be true recently.

Hence, Section 5 analyzes the general case in which the two abilities may grow at di¤erent rates.
Under realistic productivity growth, the model does much better jobs in explaining the develop-
ments after the 1980s, such as stagnant earnings of unskilled workers and the rising inequality in
the 1980-early 1990s, than under the special case. Notably, the model shows that skilled workers
shift from non-routine analytical tasks to manual tasks when the growth of analytical ability of
machines is fast, consistent with the development after around the year 2000 in the U.S. (Beaudry,
Green, and Sand, 2016).9 Although the present model with two types of workers cannot capture
the whole picture of the falling relative wage of workers with skills for middle-wage jobs after the
1990s (Böhm, 2020) (the model with three types of workers is analytically intractable), the decreas-
ing inequality predicted by the model captures an important part of the development, the falling
disparity between workers with skills for low-wage jobs and those with skills for middle-wage jobs
and more recently, moderately high-wage jobs also (Autor, Goldin, and Katz, 2020).

Finally, the model is used to examine possible future trends of the variables when information

9Beaudry, Green, and Sand (2016) �nd that the employment growth of non-routine analytical jobs stalled after
around 2000 despite the continuing growth of the supply of high-skill workers, suggesting a decrease in the demand
for such jobs. Further, they show that the average intensity of non-routine analytical tasks for college graduates
increased from the early 1980s until around 2000 but decreased thereafter.
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technology and thus the analytical ability of machines continue to grow rapidly. It is found that
earnings of both types of workers increase and earnings inequality falls over time. Consistent with
the result, Webb (2020) �nds that AI (arti�cial intelligence), whose importance is growing rapidly,
is projected to reduce the inequality between 90th and 10th percentiles of the wage distribution.
Although the analysis based on the model with two types of workers may not capture the whole
picture considering the recent widening inequality between moderately and extremely skilled work-
ers (Alvaredo et al., 2013), the �nding on the e¤ect of AI, the stagnant wage premium of college
graduates in the 2010s (Autor, Goldin, and Katz, 2020), and the increasing use of AI in market-
ing, trading, management, and other decisions suggest that machines would replace many tasks
presently performed by skilled workers in the not-distant future and thus possible e¤ects on a great
majority of the population might be captured by the model.

Related literature. The paper belongs to the literature on task (job) assignment model,
which has been developed to analyze the distribution of earnings in labor economics (see Sattinger,
1993, for a review), and recently is used to examine broad issues, such as e¤ects of technology
on the labor market (Acemoglu and Autor, 2011; Acemoglu and Restrepo, 2018; Hémous and
Olsen, 2022), on cross-country productivity di¤erences (Acemoglu and Zilibotti, 2001), and on
organizational structure and wages (Garicano and Rossi-Hansberg, 2006), e¤ects of international
trade and o¤shoring on the labor market (Grossman and Rossi-Hansberg, 2008; Costinot and Vogel,
2010; Grossman, Helpman, and Kircher, 2017), and inter-industry wage di¤erentials and the e¤ect
of trade on wages (Sampson, 2016).

The most closely related is Acemoglu and Autor (2011). They argue that the conventional
model, in which workers with di¤erent skill levels are imperfect substitutes in a macro production
function, cannot examine shifts in tasks workers with a given skill level perform and fails to capture
a large part of recent trends of task shifts, earnings levels and inequality, particularly job and wage
polarization and stagnant or negative earnings growth of unskilled workers in the U.S.; then, develop
a task assignment model with three types of workers (high-skill, middle-skill, low-skill). The �nal
good is produced from a continuum of tasks di¤erent in the degree of �complexity�. High (middle)
skill workers have comparative advantages in more complex tasks against middle (low) skill workers.
They analyze the situation where a part of tasks initially performed by middle-skill workers are
mechanized exogenously, and show that a fraction of them shift to tasks previously performed by
the other types of workers and relative earnings of high-skill workers to middle-skill workers rise
and those of middle-skill to low-skill workers fall, reproducing job and wage polarization.10

The present paper builds on their work, particularly in the modeling, but there are several
important di¤erences. First, the paper is interested in the long-run trends of task shifts, earnings
levels and inequality since the Industrial Revolution, while they focus on the recent development,
especially job and wage polarization after the 1990s. Second, the paper examines how tasks and
workers strongly a¤ected by mechanization and its e¤ects on earnings levels and inequality change
endogenously over time with improvements of manual and analytical abilities of machines, whereas,
because of their focus on job and wage polarization, they assume that mechanization occurs at
tasks previously performed by middle-skill workers. Third, the present model assumes that tasks
are di¤erent in two dimensions, the importance of analytical ability and the ease of codi�cation
(routinization); while, in their model, tasks are di¤erent in one dimension, the degree of �complex-

10They also examine the situation where a part of tasks initially performed by middle-skill workers are o¤shored
exogenously. Further, they analyze the e¤ect of changes in factor supplies on technical change using a version of the
model with endogenous factor-augmenting technical change.
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ity�, which is also the case in the dynamic model of Acemoglu and Restrepo (2018).11 ;12 Because
of the characterization of tasks by the two variables, which is a natural extension of the analyti-
cal/manual and routine/non-routine classi�cation of tasks standard in empirical works initiated by
Autor, Levy, and Murnane (2003), types of workers displaced by machines change over time (i.e.,
unskilled workers only initially, skilled workers as well more recently), and e¤ects of mechanization
on earnings levels and inequality di¤er over time.

The paper is somewhat related to the literature that examines the interaction between mecha-
nization and economic growth, such as Zeira (1998, 2010), Givon (2006), Zuleta (2008), Acemoglu
(2010), Peretto and Seater (2013), Aghion, Jones, and Jones (2019), and Ray and Mookherjee
(2021). The literature is mainly interested in whether persistent growth is possible in models
where economies grow through mechanization and whether the dynamics are consistent with styl-
ized facts of growth. While the standard model assumes labor-augmenting technical change, which
is labor-saving but not capital-using (thus does not capture mechanization), these papers (except
Zeira, 2010; Ray and Mookherjee, 2021) consider technical change that is labor-saving and capital-
using. Such technical change yields a declining share of labor income or a long-run constant share,
depending on production technologies. By contrast, for given technologies, Zeira (2010) examines
interactions among capital accumulation, changes in factor prices, and mechanization. His model
can be interpreted as a dynamic task assignment model after a slight modi�cation of the produc-
tion technology. Unlike the present model, the model assumes homogenous labor and constant
productivity of machines. Ray and Mookherjee (2021) develop a general dynamic model of task
assignment with physical and human capital accumulations and provide conditions for the long-run
labor income share to converge to 0. They are not concerned with the transitional dynamics and
the personal distribution of income.

Organization of the paper. The paper is organized as follows. Section 2 presents the model
and Section 3 derives equilibrium allocations for given machine abilities. Section 4 examines e¤ects
of improved machine abilities and increased relative supply of skilled workers on task assignment,
earnings levels and inequality, and aggregate output, when the two abilities improve proportion-
ately. Section 5 examines the general case in which the abilities may improve at di¤erent rates, and
Section 6 concludes. Appendix A presents lemmas. Appendix B contains proofs of lemmas and
propositions of Section 4, while proofs of propositions of the general case, which are very lengthy,
are contained in Web Appendix.13

11Acemoglu and Restrepo (2018) develop a dynamic task assignment model with two types of technological changes,
the automation of tasks (the replacement of labor by capital) and the development of new tasks replacing the least
�complex�existing tasks. Their main interests are to characterize conditions for asymptotically stable balanced growth
for a version of the model with directed technological changes and one type of labor (and capital and intermediates
embodying technologies) and to examine the e¤ect of shocks to technologies on factor prices and factor shares in
employment and income. They also consider a version of the model with exogenous technological changes and
two types of labor (skilled labor has a comparative advantage in more �complex� tasks) and examine the e¤ect of
technological changes on wage inequality. In particular, they show that automation increases wage inequality.
12Hémous and Olsen (2022) develop a dynamic model with two types of technological changes a la Acemoglu

and Restrepo (2018) and high- and low-skill workers. Unlike Acemoglu and Restrepo (2018) and the present paper,
di¤erent tasks are symmetric (except whether they are automated or not), and unlike this paper, the production
technology is such that only low-skill workers can be displaced by machines. They show that an increase in the
share of automated tasks raises skilled wage and skill premium, lowers labor income share, and has an ambiguous
e¤ect on unskilled wage. They examine quantitatively how well the model can explain evolutions of the wages, wage
inequality, and labor income share of the U.S. after the 1960s.
13The address is http://www.econ.kyoto-u.ac.jp/~yuki/english.html.
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Figure 1: A continuum of tasks

2 Model

Consider a small open economy where three types of factors of production� skilled workers, un-
skilled workers, and machines� are available. All markets are perfectly competitive.

Factors of production and tasks: Each factor is characterized by analytical ability and
manual ability. Denote analytical abilities of a skilled worker, an unskilled worker, and a machine by
h; la, and ka, respectively, where h > la, and their manual abilities by lm, lm, and km; respectively.
Skilled and unskilled workers have the same level of manual ability, re�ecting the fact that there
is no strong correlation between the two abilities.

The �nal good is produced from a continuum of tasks that are di¤erent in the importance
of analytical ability, a 2 [0; 1], and the ease of codi�cation (routinization), c 2 [0; 1] (Figure
1). In the real economy, low a and high c tasks are those involving repetitive motions such
as assembling or sorting objects and are typical in production jobs; low a and low c tasks are
those entailing non-repetitive motions such as driving vehicles and caring for the elderly and are
important in low-wage service jobs; high a and high c tasks entail simple information processing
such as calculation and recording information and are typical in clerical jobs; high a and low c tasks
involve complex analysis and judgement mainly associated with management, professional, and
technical jobs. The characterization of tasks by the two variables, a and c; is a natural extension of
the analytical/manual and routine/non-routine classi�cation of tasks standard in empirical works
initiated by Autor, Levy, and Murnane (2003).

Tasks are uniformly distributed over the (a; c) space. Productivities of a skilled worker, an
unskilled worker, and a machine in task (a; c) are given by:

Ah(a) = ah+ (1� a)lm; (1)

Al(a) = ala + (1� a)lm; (2)

cAk(a) = c[aka + (1� a)km]: (3)

Except the most manual tasks (a = 0) and the most analytical tasks (a = 1), both abilities
contribute to the production of each task, but the relative contribution of analytical ability is
greater in tasks with higher a.14 Since h > la, skilled workers have comparative advantages in

14One interpretation of the linear speci�cation is that task (a; c) is composed of the proportion a of analytical
subtasks, where only analytical ability matters, and the proportion 1 � a of manual ones, and the two types of
subtasks requiring di¤erent abilities are perfectly substitutable in the production of the task.
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more analytical tasks relative to unskilled workers. For given a, machines are more productive in
tasks with higher c, while workers are assumed to be equally productive for any c. Because of the
multiplicative form of (3), irrespective of levels of ka and km, humans are more productive than
machines in tasks with very low c; ensuring that humans can always �nd tasks to engage in.15

Production: At each task, factors are perfectly substitutable as in Acemoglu and Autor (2011)
and Acemoglu and Restrepo (2018), thus the production function of task (a; c) equals:

y(a; c) = Ah(a)nh(a; c) +Al(a)nl(a; c) + cAk(a)nk(a; c); (4)

where ni(a; c) (i = h; l; k) is the amount of factor i engaged in the task. The output of the task,
y(a; c), may be interpreted as either an intermediate good or a direct input in �nal good production,
which is produced by either �nal good producers or separate entities.

The �nal good production function is Leontief with equal weights on all tasks, that is, all tasks
are equally essential in the production:

Y = min
a;c
fy(a; c)g: (5)

The Leontief speci�cation is assumed for simplicity. Similar results would be obtained as long as
di¤erent types of tasks are complementary in the production, though more general speci�cations
seem to be analytically intractable.16

To summarize, di¤erent tasks are complementary in �nal good production, but di¤erent factors
are perfectly substitutable at each task. Because of this speci�cation and the two dimensional task
space, as will be shown later, types of workers displaced by machines and e¤ects of mechanization
on earnings levels and inequality change over time.

Factor markets: A unit of each factor supplies a unit of time inelastically. Let the �nal good
be the numeraire and let the relative price of (the output of) task (a; c) be p(a; c). Then, from cost
minimization problems,

p(a; c) = min

�
wh
Ah(a)

;
wl
Al(a)

;
r

cAk(a)

�
; (6)

where wh (wl) is earnings of a skilled (an unskilled) worker and r is exogenous interest rate.17 That
is, �rms choose a factor(s) so that a unit cost of task production becomes lowest.

From (6), the basic pattern of task assignment can be derived (details are explained later).
Since the relative productivity of skilled to unskilled workers Ah(a)

Al(a)
increases with a, there exists

unique a�2(0; 1) satisfying Ah(a
�)

Al(a�)
= wh
wl
and skilled (unskilled) workers are chosen over the unskilled

(skilled) in tasks with a> (<)a�, i.e., tasks satisfying Ah(a)
Al(a)

> (<)whwl . That is, skilled (unskilled)
workers are assigned to relatively analytical (manual) tasks. For a < a�, the unskilled (machines)
are assigned to tasks satisfying Al(a)

cAk(a)
> (<)wlr , and for a>a

�, the skilled (machines) are assigned

to tasks satisfying Ah(a)
cAk(a)

> (<)whr . Comparative advantages of factors and relative factor prices
determine task assignment.

Task (intermediate good) markets: Because each task (intermediate good) is equally es-
sential in �nal good production, y(a; c) = Y must hold for any (a; c). Thus, the following is true
for any (a; c) with nh(a; c) > 0, any (a0; c0) with nl(a0; c0) > 0, and any (a00; c00) with nk(a00; c00) > 0,
except for the set of measure 0 tasks in which multiple factors are employed:
15Qualitative results do not change if the maximum value of c is any �nite number. It must be �nite to explain

the fact that highly analytical tasks were not mechanized at least before the Second Industrial Revolution.
16Also, the model with a Cobb-Douglas technology seems to be very di¢ cult to analyze. An advantage of the

Leontief speci�cation over the Cobb-Douglas is that, as shown below, it yields a realistic result that, among tasks in
which a given factor is employed, it is employed intensively in tasks in which their productivities are low.
17The closed economy model is analytically intractable. Given that the real interest rate has been stable in the

U.K. and the U.S. over the long-run, results would not be a¤ected much by the assumption of the small open economy.
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Ah(a)nh(a; c) = Al(a
0)nl(a

0; c0) = c00Ak(a
00)nk(a

00; c00) = Y: (7)

Among tasks in which a given factor is employed, it is employed intensively in tasks in which its
productivity is low, e.g., nh(a; c) is large in tasks with low Ah(a).

Denote the amount of total supply of factor i (i = h; l; k) by Ni; where Nk is endogenous. Then,
by substituting (7) into the factor market clearing condition

RR
ni(a;c)>0

ni(a; c)dadc = Ni,

NhRR
nh(a;c)>0

1
Ah(a)

dadc
=

NlRR
nl(a;c)>0

1
Al(a)

dadc
=

NkRR
nk(a;c)>0

1
cAk(a)

dadc
= Y: (8)

The �rst equality of (8) is one of the two key equations, which states that task assignment is
determined so that market clearing conditions are satis�ed for both type of workers.

Since a unit of the �nal good is produced from inputs of a unit of every task and the �nal good
is the numeraire,ZZ

p(a; c)dadc = 1 (9)

, wl

ZZ
nl(a;c)>0

1

Al(a)
dadc+ wh

ZZ
nh(a;c)>0

1

Ah(a)
dadc+ r

ZZ
nk(a;c)>0

1

cAk(a)
dadc = 1; (10)

where the second equation is from (6). (10) is the other key equation, which states that task
assignment must be such that the unit production cost of the �nal good equals 1.

Equilibrium: A competitive equilibrium is de�ned by (6)�(8), (10), and task assignment
conditions such as Ah(a

�)
Al(a�)

= wh
wl
that are derived explicitly in the next section. As explained next,

task assignment and wages are determined by the �rst equality of (8), (10), and the task assignment
conditions. Then, Nk and Y (= y(a; c)) are determined by the second and third equalities of (8),
respectively; ni(a; c) (i = h; l; k) is determined by (7); p(a; c) is determined by (6).

3 Analysis
This section derives task assignment and wages explicitly for given levels of machine abilities ka
and km. So far, no assumptions are imposed on comparative advantages of machines to workers.
Until Section 5, it is assumed that ka

km
< la

lm
(< h

lm
), that is, machines have comparative advantages

in relatively manual tasks. Then, Al(a)Ak(a)
and Ah(a)

Ak(a)
increase with a. With this assumption, the task

assignment conditions can be stated explicitly.

3.1 Task assignment conditions

Remember that, for a < a�, unskilled workers (machines) perform tasks (a; c) with Al(a)
cAk(a)

> (<)wlr ,
i.e., the relative productivity of the unskilled to machines being greater (smaller) than the ratio
of unskilled wage to interest rate, and for a > a�, skilled workers (machines) perform tasks (a; c)
with Ah(a)

cAk(a)
> (<)whr , where a

� is de�ned by

Ah(a
�)

Al(a�)
=
wh
wl
: (11)

Further, since ka
km

< la
lm
(< h

lm
); machines (humans) perform tasks with relatively low (high)

a and high (low) c; thus, for given c, machines perform tasks with a > a� only if they perform
all tasks with a � a�. Based on these results, critical variables and functions determining task
assignment, cm; c�; ca; cl(a); and ch(a), are de�ned next. Figure 2, which illustrates task assignment
when ka

km
< la

lm
, is useful for understanding the following.

8



(a) When c� = ca = 1 (b) When c� < ca = 1 (c) When c� < ca < 1

Note: c� � minfcl(a�); 1g; ca � minfch(1); 1g

Figure 2: Examples of task assignment when ka
km
< la

lm

Unskilled workers vs. machines: From the above discussion, if nk(a; c)>0 for some (a; c),
nk(0; 1)> 0, i.e., whenever machines are used, they are used in the most manual and easiest-to-
codify task. Then, there exists unique c2(0; 1); denoted cm; such that �rms are indi¤erent between
using machines and using the unskilled for task (0; cm) (see Figure 2).18 Formally, cm is de�ned by

Al(0)

cmAk(0)
=

lm
cmkm

=
wl
r
: (12)

From this equation, the similar condition for a > 0, Al(a)
cAk(a)

= wl
r ; is expressed as

Al(a)
cAk(a)

=

lm
cmkm

,c= km
lm

Al(a)
Ak(a)

cm. Let cl(a)� km
lm

Al(a)
Ak(a)

cm. Given a, using machines and unskilled workers are
indi¤erent at c= cl(a) and machines (unskilled workers) are employed for c > (<)cl(a). If there
exists c<1 such that the two choices are indi¤erent at task (a�; c), i.e., cl(a�)<1, machines perform
some tasks with a > a� (Figure 2 (b) and (c)). If cl(a�) � 1; machines do not perform tasks for
skilled workers (Figure 2 (a)): Let c��min fcl(a�); 1g :

Skilled workers vs. machines: When c�<1, cl(a
�)<1, the choice between machines and

skilled workers arises (Figure 2 (b) and (c)). From Ah(a
�)

Al(a�)
= wh

wl
and (12), the condition Ah(a)

cAk(a)
= wh

r

can be expressed as Ah(a)
cAk(a)

= lm
km

Ah(a
�)

Al(a�)
1
cm
,c=ch(a)� km

lm

Al(a
�)

Ah(a�)
Ah(a)
Ak(a)

cm: Given a, employing either
factor is indi¤erent at c= ch(a). If there exists c< 1 such that either choice is indi¤erent at task
(1; c), i.e., ch(1)<1, machines perform some tasks with a=1 (Figure 2 (c)). Let ca�min fch(1); 1g :

Patterns of task assignment are clear from Figure 2. Given a, machines perform tasks with
relatively high c. From the assumption that machines have comparative advantages in relatively
manual tasks, given c; they perform tasks with relatively low a and the proportion of tasks per-
formed by machines decreases with a, i.e., cl(a) and ch(a) are upward sloping.

3.2 Key equations determining equilibrium, (HL) and (P)
From their de�nitions, cl(a), ch(a); c�; and ca are functions of a� and cm:

18When machines are not employed in any task, cm is set to be equal 1.
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cl(a) =
km
lm

Al(a)

Ak(a)
cm; ch(a) =

km
lm

Al(a
�)

Ah(a�)

Ah(a)

Ak(a)
cm; (13)

c� � min fcl(a�); 1g , ca � min fch(1); 1g : (14)

From (12) and (11); wages are expressed as functions of a� and cm:

wl =
lm
km

r

cm
; wh =

lm
km

Ah(a
�)

Al(a�)

r

cm
: (15)

Hence, the two key equations determining equilibrium, the �rst equality of (8) and (10), can
be expressed as (see Figure 2 for the ranges of integrations):

Nh
Nl

Z a�

0

Z minfcl(a);1g

0

1

Al(a)
dcda =

Z 1

a�

Z minfch(a);1g

0

1

Ah(a)
dcda; (HL)

lm
km

r

cm

Z a�

0

Z minfcl(a);1g

0

1

Al(a)
dcda+

lm
km

Ah(a
�)

Al(a�)

r

cm

Z 1

a�

Z minfch(a);1g

0

1

Ah(a)
dcda

+r

"Z a�

0

Z 1

minfcl(a);1g

1

cAk(a)
dcda+

Z 1

a�

Z 1

minfch(a);1g

1

cAk(a)
dcda

#
= 1; (P)

(HL) and (P) determine values of a� and cm. Then, cl(a); ch(a); c�; ca; and thus task assignment
are determined from (13) and (14), earnings are determined from (15), and the remaining variables
are determined as stated at the end of Section 2.

3.3 Illustration of the determination of equilibrium a� and cm

Figure 3: Values of c� and ca on the (a�; cm) space when ka
km
< la

lm

The determination of equilibrium a� and cm can be illustrated using a �gure depicting graphs
of (HL) and (P) on the (a�; cm) space. Since the shape of (HL) di¤ers depending on whether c� and
ca equal 1 or not, as shown in Figure 3, the (a�; cm) space is divided into three regions based on
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Figure 4: Shape of (P) and its relations with km; ka; and r

values of a� and cm: when cm � lm
km

Ak(a
�)

Al(a�)
, c� = ca = 1 holds;19 when cm2

h
lm
km

ka
h
Ah(a

�)
Al(a�)

; lmkm
Ak(a

�)
Al(a�)

�
,

c� < ca = 1 holds;20 when cm < lm
km

ka
h
Ah(a

�)
Al(a�)

, c� < ca < 1 holds.

3.3.1 Shape of (P) and its relations with exogenous variables

Figure 4 shows the shape of (P) and its relations with exogenous variables, km ka; and r, based on
Lemma 4 in Appendix A. Remember that, in order for (P) to hold, task assignment must be such
that the unit production cost of the �nal good equals 1. cm satisfying (P) increases with a�, i.e.,
(P) is upward-sloping on the (a�; cm) plane. The reason is that, if an increase in a� lowers cm, both
wl=

lm
km

r
cm
and wh=

Ah(a
�)

Al(a�)
wl increase and thus the unit production cost exceeds 1. An increase in

r; which raises the cost of hiring machines, shifts the locus upward, i.e., cm increases for given a�.
This is because higher cm implies greater cl(a) and ch(a) from (13); thus a higher portion of tasks
assigned to humans. The opposite holds when abilities of machines, km and ka; increase.21

3.3.2 Shape of (HL) and its relations with exogenous variables

The shape of (HL) and its relations with exogenous variables, NhNl and
ka
km
, are illustrated in Figure

5, based on Lemmas 1�3 in Appendix A.22 The left �gure shows that (HL) is negatively sloped
when ca=1 and is vertical when ca<1 on the (a�; cm) space. The shape can be explained intuitively
as follows. A decrease in cm lowers cl(a) and ch(a) and raises the proportion of tasks performed by

19This is because cm � lm
km

Ak(a
�)

Al(a
�) ,

Al(a
�)

1�Ak(a�)
� lm

cmkm
= wl

r
from (15), that is, unskilled workers are weakly chosen

over machines at task (a�; 1); which implies that machines are not used in any tasks with a > a�:
20This is because cm < lm

km

Ak(a
�)

Al(a
�) ,

Al(a
�)

1�Ak(a�)
< wl

r
and cm � lm

km

ka
h
Ah(a

�)
Al(a

�) ,
h

1�ka �
lm

cmkm

Ah(a
�)

Al(a
�) =

wh
r
from (15),

that is, machines are strictly chosen over the unskilled at task (a�; 1) and the skilled are weakly chosen over machines
at task (1; 1), which implies that machines are used in some tasks with a > a� but not in tasks with a = 1 and c < 1:
21The locus never intersects with cm = 0; because machines are completely useless and thus hiring machines are

prohibitively expensive at the hardest-to-codify tasks.
22The shape and the relations do not depend on the assumption ka

km
< la

lm
, though c�=ca=1 (the upper region in

the �gures) does not arise when ka
km

� la
lm
and c� < ca = 1 (the middle region) does not arise when ka

km
� h

lm
:
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(a) Relation of (HL) with Nh
Nl

(b) Relation of (HL) with ka
km

Figure 5: Shape of (HL) and its relations with Nh
Nl
and ka

km

machines (Figure 2). When ca=1; i.e., machines do not perform any tasks with a=1 and c<1, the
mechanization mainly a¤ects unskilled workers engaged in relatively manual tasks and thus they
shift to more analytical tasks, i.e., a� increases. By contrast, when ca< 1, both types of workers
are equally a¤ected and thus a� remains unchanged.

The left and right �gures illustrate the relations of (HL) with Nh
Nl
and ka

km
, respectively. An

increase in Nh
Nl
implies that a higher portion of tasks must be performed by skilled workers, thus,

(HL) shifts to the left, i.e., for given cm; a� decreases. Less straightforward is the e¤ect of an
increase in ka

km
, which shifts the locus to the right (left) when cm is high (low), de�nitely so when

c�=1 (when ca<1). An increase in ka
km

weakens comparative advantages of humans in analytical
tasks and thus lowers, particularly for relatively high a, cl(a), ch(a), and the portion of tasks
performed by humans (Figure 2). When cm (thus c� and ca) is high, such mechanization mainly
a¤ects unskilled workers and thus a� must increase,23 while the opposite is true when cm is low.

3.3.3 Determination of equilibrium (a�; cm)

As Figure 6 illustrates, equilibrium (a�; cm) is determined at the intersection of the two loci. Of
course, the position of the intersection depends on exogenous variables such as km and ka. The
next two sections examine how increases in km, ka; and

Nh
Nl
a¤ect the equilibrium, particularly,

task assignment, earnings levels and inequality, and aggregate output.

4 Mechanization with constant ka
km

Suppose that abilities of machines, km and ka, and thus their productivities cAk(a) increase exoge-
nously over time. This section examines e¤ects of the productivity growth and of an increase in Nh

Nl

on task assignment, earnings levels and inequality, and output, when km and ka satisfying ka
km
< la

lm

23For example, when c� = ca = 1, cl(a) intersects with c = 1 at a � a� on the (a; c) plane (Figure 2 (a)). In this
case, it would be clear that the mechanization mainly a¤ects unskilled workers.
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Figure 6: Determination of equilibrium a� and cm

grow proportionally. Since (HL) does not shift under constant ka
km

(Figure 5 (b)); the analysis
is much simpler than the general case examined in Section 5. The next proposition presents the
dynamics of the critical variables and functions determining task assignment.

Proposition 1 Suppose that km and ka satisfying ka
km
< la

lm
grow proportionally over time.

(i)When initial km is very low, cm=c�=ca=1 is satis�ed at �rst;24 at some point, cm<c�=ca=1
holds and thereafter cm falls over time; then, cm<c�<ca=1 and c� too falls; �nally, cm<c�<
ca<1 and ca falls as well.

(ii) a� increases over time when cm < ca = 1, while a� is time-invariant when cm = 1 and when
ca < 1.

(iii) cl(a) and ch(a) (when c�<1) decrease over time when cm<1.

Proof. See Appendix B.

The results of this proposition can be understood using �gures similar to Figure 6. When the
level of km is very low, there are no (a�; cm) satisfying (P); or (P) is located at the left side of
(HL) on the (a�; cm) plane (Figure 7 (a)). Hence, the two loci do not intersect and an equilibrium
with cm < 1 does not exist. Because the manual ability of machines is very low, using machines
is not rewarding and all tasks are performed by humans. Figure 7 (a) illustrates an example of
the determination of equilibrium cm and a� in this case. Equilibrium a� is determined at the
intersection of (HL) with cm=1. Figure 7 (b) illustrates the corresponding task assignment on the
(a; c) plane, which shows that unskilled (skilled) workers perform all tasks with a< (>)a�:

When km becomes high enough that (P) is located at the right side of (HL) at cm=1, the two
loci intersect and thus machines begin to be used, i.e., cm < 1. Note that the level of ka is not
important for the initiation of mechanization, because mechanization starts from the most manual
tasks in which analytical ability is of no use. Because of low machine productivities, they perform
only highly manual and easy-to-codify tasks that were previously performed by unskilled workers,

24As noted in footnote 18, the value of cm when all tasks are performed by humans is set to be equal 1.
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(a) Equilibrium (b) Task assignment

Figure 7: Equilibrium and task assignment when cm = c� = ca = 1

(a) Equilibrium (b) Task assignment (c) E¤ect of productivity growth
with constant ka

km

Figure 8: Equilibrium, task assignment, and the e¤ect of productivity growth with constant ka
km

when cm < c� = ca = 1
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(a) Equilibrium (b) Task assignment (c) E¤ect of productivity growth
with constant ka

km

Figure 9: Equilibrium, task assignment, and the e¤ect of productivity growth with constant ka
km

when cm < c� < ca = 1

i.e., c� = ca = 1. Indeed, large-scale mechanization originated in tasks associated with simple
repetitive motions in textile during the Industrial Revolution. Figure 8 (a) and (b) respectively
illustrate the determination of equilibrium cm and a� and task assignment. Figure 8 (c) presents
the e¤ect of small increases in km and ka on task assignment. Since machines perform a greater
portion of highly manual and easy-to-codify tasks, a� increases and cl(a) decreases, that is, workers
shift to more analytical and, as for unskilled workers, harder-to-routinize tasks. Consistent with
the model, during early stages of industrialization, humans shifted from manual tasks at farms,
cottages, and workshops toward analytical tasks at o¢ ces and factories (generally associated with
clerical, management, and technical jobs) as well as manual tasks at factories, and manual workers
shifted to tasks involving more complex motions machines were not good at.

As km and ka grow over time, automation spreads to relatively analytical tasks, and eventually,
machines come to perform highly analytical tasks, those previously performed by skilled work-
ers. In the real economy, the new phase of mechanization started during the Second Industrial
Revolution� e.g., teleprinters replaced Morse code operators and tabulating machines substituted
data-processing workers at large organizations� and has progressed on a large scale in the post
World War II era, especially since the 1970s, because of the advancement of information tech-
nology. Figure 9 (a) and (b) respectively illustrate the determination of equilibrium cm and a�

and task assignment when cm < c� < ca = 1. Machines perform some tasks with a > a� but not
the most analytical ones, i.e., c�< ca=1. Productivity growth lowers ch(a) as well as cl(a) (and
raises a�), thus skilled workers too shift to more di¢ cult-to-codify tasks (Figure 9 (c)). Congruent
with the model, since the 1970s, humans have shifted from routine analytical tasks (such as simple
information processing tasks typical in clerical jobs) as well as manual tasks toward non-routine
analytical tasks mainly associated with professional and technical jobs and non-routine manual
tasks in services.

Finally, the economy reaches the case cm < c� < ca < 1, which is illustrated in Figure 10.
Machines perform a portion of the most analytical tasks, i.e., ca< 1: In fact, currently, machines
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(a) Equilibrium (b) Task assignment (c) E¤ect of productivity growth
with constant ka

km

Figure 10: Equilibrium, task assignment, and the e¤ect of productivity growth with constant ka
km

when cm < c� < ca < 1

are engaged in some tasks involving analysis and decision-making, such as automated trading
in �nancial markets. Unlike the previous cases, productivity growth a¤ects two type of workers
equally and thus a� does not change, while ch(a) and cl(a) decrease and thus workers shift to more
di¢ cult-to-codify tasks.

In sum, when the two abilities of machines with ka
km

< la
lm
improve proportionally over time,

mechanization starts from highly manual and easy-to-codify tasks and gradually spreads to more
analytical and harder-to-codify tasks. Eventually, machines come to perform highly analytical
tasks previously performed by skilled workers. Accordingly, unskilled workers shift to tasks that
are more di¢ cult to codify, so do skilled workers in later stages of mechanization, and both types
shift to more analytical tasks except at the �nal stage.

The dynamics of task assignment accord with the long-run trends of mechanization and of shifts
in tasks performed by humans except job polarization after the 1990s, which are detailed in the
introduction and is summarized as: initially, mechanization proceeded in tasks intensive in manual
labor, while automation of tasks intensive in analytical labor started during the Second Industrial
Revolution and has progressed on a large scale in the post World War II era, especially since
the 1970s, because of the advancement of information technology; humans shifted from manual
tasks to analytical tasks until about the 1960s, whereas, thereafter, they have shifted away from
routine analytical tasks as well as routine manual tasks toward non-routine analytical tasks and
non-routine manual tasks in services.

E¤ects of the productivity growth on earnings levels and inequality, and aggregate output are
examined in the next proposition.

Proposition 2 Suppose that km and ka satisfying ka
km
< la

lm
grow proportionately over time when

cm<1.
(i) Earnings of skilled workers increase over time. When c�<ca<1, earnings of unskilled workers

too increase.
(ii) Earnings inequality, whwl , rises over time when ca=1 and is time-invariant when ca<1.
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(a) when cm< c�=ca=1 (b) when cm< c�< ca=1 (c) when cm< c�< ca< 1

Figure 11: E¤ect of an increase in Nh
Nl
on task assignment when ka

km
< la

lm

(iii) The output of the �nal good, Y; increases over time.

Proof. See Appendix B.

The proposition shows that, while skilled workers always bene�t from mechanization, the e¤ect
on earnings of unskilled workers is ambiguous when mechanization mainly a¤ects them, i.e., when
ca = 1; and the e¤ect turns positive when ca < 1. Because di¤erent tasks are complementary in
�nal good production, the increased productivity of machines raises the demand for tasks that are
not directly a¤ected by mechanization, shifts workers to these tasks, in which they have greater
comparative advantages, and increases output. This has a positive e¤ect on earnings. But it also
leads to the substitution of workers with speci�c skill levels by machines and has a negative e¤ect
on their earnings. When machines replace only or mainly unskilled workers, i.e., when ca = 1;
the negative substitution e¤ect could dominate the positive complementarity e¤ect for unskilled
workers and thus their earnings could decrease, while when machines replace both types of workers
similarly, i.e., when ca < 1; the complementarity e¤ect dominates and their wage increases.25 As
for skilled workers, it is always the case that the complementarity e¤ect dominates the substitution
e¤ect and thus their earnings increase. Mechanization worsens earnings inequality wh

wl
when ca=1;

while it has no e¤ect when ca<1. The output of the �nal good always increases, even if la<h<lm
and thus workers�productivities, Ah(a) and Al(a), fall as they shift to more analytical tasks.

So far, the ratio of skilled workers to unskilled workers, NhNl , is held constant, though it has
increased over time, particularly after the 20th century, in the real economy. Thus, the next
proposition examines e¤ects of the growth of NhNl for given machine qualities.

Proposition 3 Suppose that NhNl grows over time when
ka
km
< la
lm
and cm<1.

(i) cm, a�, c� (when c� < 1); and cl(a) decrease, while ca (when ca < 1) and ch(a) (when c� < 1)
increase over time.

(ii) wl (wh) rises (falls) and earnings inequality,
wh
wl
, shrinks over time.

(iii) Y increases over time under constant Nh+Nl.
25The complementarity e¤ect is relatively small when ca=1; because they shift not only to more di¢ cult-to-codify

tasks, i.e., tasks with greater comparative advantages relative to machines, but also to more analytical tasks, i.e.,
tasks with weaker comparative advantages relative to skilled workers.
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Proof. See Appendix B.

Figure 11 illustrates the e¤ect of an increase in Nh
Nl
on task assignment. Since skilled workers be-

come abundant relative to unskilled workers, they take over a portion of tasks previously performed
by unskilled workers, i.e., a� decreases. Further, earnings of unskilled workers rise and those of
skilled workers fall, thus some tasks previously performed by unskilled workers are mechanized, i.e.,
cl(a) decreases, while, when c� < 1, skilled workers take over some tasks performed by machines
before, i.e., ch(a) increases. That is, skilled workers shift to more manual tasks, and unskilled
workers shift to harder-to-routinize tasks. The wage of unskilled workers increases because of the
positive complementarity e¤ect from the increased number of workers with greater abilities. The
wage of skilled workers decreases because they have weaker comparative advantages in tasks they
take over. Output increases mainly because the skilled are more productive than the unskilled.

By combining the results on e¤ects of an increase in Nh
Nl
with those of the productivity growth,

the model can explain the long-run trends of earnings levels and inequality until the 1970s,26 except
the 1940s during which institutional factors such as the policy-induced sharp increase in union
membership and the wartime wage setting rules are likely to be important (Goldin and Katz, 2008;
Farber et al., 2021). The trends, which are described more in detail in the introduction, are: in
early stages of industrialization when mechanization directly a¤ected unskilled workers only and the
relative supply of skilled workers grew slowly, earnings of unskilled workers grew very moderately
and earnings inequality rose; in later periods when skilled workers too were directly a¤ected by
automation and the relative supply of skilled workers grew faster, unskilled workers bene�ted more
from mechanization, while, as before, the rising inequality was the norm in economies with lightly
regulated labor markets (such as the U.S.), except in periods of a rapid increase in the relative
supply of educated workers (such as the 1970s) and in the 1940s, when the inequality fell.

The model, however, fails to capture the trends after the 1980s, which are: earnings of unskilled
workers fell or stagnated and those of skilled workers rose until the mid 1990s in the U.S. (Autor,
2019);27 the overall inequality rose greatly after the 1980s (after the 1990s in many European
economies, OECD, 2008); since the 1990s, earnings of those with skills for middle-wage jobs have
fallen relative to earnings of those with skills for low-wage jobs and those with skills for high-wage
jobs at least in the U.S. (Böhm, 2020). By contrast, the model predicts that earnings of unskilled
workers increase and the inequality shrinks when highly analytical tasks are a¤ected by automation,
i.e., when ca<1, and the relative supply of skilled workers rises.

5 Mechanization with time-varying ka
km

The previous section has examined the case in which km and ka grow proportionately. This special
case has been taken up �rst for analytical simplicity. However, the assumption of the proportionate
growth is rather restrictive, because, according to the trend of mechanization described in the
introduction, the growth of km was apparently faster than that of ka for most periods of time
(major technological developments before the 1970s increased productivities of machines to perform
production and transportation tasks), while ka seems to have been growing faster than km recently
(because of the rapid advance of information technology).28

26The combined e¤ect of an increase in Nh
Nl

and improvements of machine qualities on task assignment accords
with the trend of task shifts in the real economy when c�=1: When c�<1, it is consistent with the fact, unless the
negative e¤ect of an increase in Nh

Nl
on ch(a) is very strong (see Figure 11).

27According to Autor (2019), composition-adjusted real wages are lower in 1995 than in 1980 for full-time male
workers without graduate degrees and for full-time female workers without college degrees.
28Note that ka was positive even before the Industrial Revolution. Various machines had automatic control systems

whose major examples are: �oat valve regulators used in ancient Greece and in the medieval Arab world to control
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(a) when ka
km
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h
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) (b) when ka
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Figure 12: c� and ca when ka
km
2( lalm ;

h
lm
) and when ka

km
> h
lm
(> la

lm
)

This section examines the general case in which the machine abilities may grow at di¤erent
rates. This case is much harder to analyze because a change in ka

km
shifts the graph of (HL) as well

as that of (P) (see Figures 5 and 4 in Section 3). Under realistic productivity growth, the model
does much better jobs in explaining the development after the 1980s.

Unlike the previous case, shapes of graphs in Figures 2 and 3 may change qualitatively with
productivity growth. Starting from the situation where ka

km
< la
lm
(< h

lm
) holds, if ka keeps growing

faster than km, i.e., the rapid growth of information technology continues, ka
km
2 ( lalm ;

h
lm
), then

ka
km

> h
lm
(> la

lm
) hold eventually. That is, comparative advantages of machines to two type of

workers change over time. As illustrated in Figure 12, when ka
km
2( lalm ;

h
lm
); c� < 1 always holds, i.e.,

machines perform some tasks with a> a�, and when ka
km
> h
lm
(> la

lm
); ca < c

� < 1 always holds, i.e.,
machines perform some tasks with a= 1.29

Figure 13 illustrates cl(a) and ch(a) and task assignment on the (a; c) space when ka
km
2( lalm ;

h
lm
)

(the �gure is drawn assuming ca<1) and when ka
km
> h
lm
. Unlike the original case ka

km
< la
lm
, cl(a) is

downward-sloping and, when ka
km
> h
lm
, ch(c) too is downward-sloping. Hence, when ka

km
2( lalm ;

h
lm
); for

given c; machines tend to perform tasks with intermediate a and the proportion of tasks performed
by machines is highest at a = a�. When ka

km
> h
lm
, for given c; machines tend to perform relatively

analytical tasks and the proportion of tasks performed by machines increases with a.

5.1 E¤ects of changes in km, ka; and Nh
Nl

Now, e¤ects of changes in km and ka on task assignment, earnings levels and inequality, and output
are examined. Since results are di¤erent depending on whether c� and ca equal 1 or not, they are

the level of water in tanks and devices such as water clocks and oil lamps; temperature regulators of furnaces invented
in early 17th century Europe.
29This is because c� = min

n
km
lm

Al(a
�)

Ak(a
�) cm;1

o
and ca = min

n
h
ka

km
lm

Al(a
�)

Ah(a
�) cm;1

o
.

19



(a) when ka
km
2( lalm ;

h
lm
) (b) when ka

km
> h
lm

Figure 13: cl(a) and ch(a) when ka
km
2( lalm ;

h
lm
) (ca<1 is assumed) and when ka

km
> h
lm

presented in three propositions.30 ;31 The next proposition analyzes the e¤ects in the �rst stage of
mechanization, c�=ca=1; which arises only when ka

km
< la

lm
.

Proposition 4When cm� lm
km

Ak(a
�)

Al(a�)
, c�=ca=1 (possible only when ka

km
< la

lm
),

(i) cm decreases and a� increases with km and ka:
(ii) cl(a) decreases with km and ka.
(iii) wh,

wh
wl
, and Y increase with km and ka: wl increases with ka.

The only di¤erence from the constant ka
km

case is that wl increases when ka rises with km
constant. As before, with improved machine qualities, cm and cl(a) decrease and a� increases, i.e.,
workers shift to more analytical and, for unskilled workers, harder-to-codify tasks (see Figure 8 (c)
in Section 4), and earnings of skilled workers, earnings inequality wh

wl
, and output rise.

The next proposition examines the e¤ects in the second stage of mechanization, c� < ca = 1,
which is possible only when ka

km
< h
lm
:

Proposition 5When cm2
h
lm
km

ka
h
Ah(a

�)
Al(a�)

; lmkm
Ak(a

�)
Al(a�)

�
,c�<ca=1 (possible only when ka

km
< h
lm
),

(i) cm decreases with km and ka. a� increases when ka
km

non-increases.
(ii) cl(a) and ch(a) decrease with km and ka.
(iii) wh and Y increase with km and ka, while wl increases with ka.

wh
wl
increases when ka

km
non-

increases.

There are several di¤erences from the constant ka
km
case, though not relevant to the analysis in

the next subsection. First, e¤ects of productivity growth with increasing ka
km

on a� and earnings
inequality are ambiguous, and wl increases with ka: Second, although cl(a) (thus cm) and ch(a)
decrease and thus workers shift to harder-to-routinize tasks as in the original case, workers may not
shift to more analytical tasks when a� decreases (possible when ka

km
increases) and when ka

km
2( lalm ;

h
lm
)

30When ka
km

> la
lm
, cm = 1 is possible with c� or ca < 1. However, such situation� the most manual and easy-to-

codify task is not mechanized while some of other tasks are� is unrealistic and thus is not examined.
31Proofs of these propositions and Proposition 7 are very lengthy and thus are relegated to Web Appendix posted

on the author�s web site (http://www.econ.kyoto-u.ac.jp/~yuki/english.html).
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Figure 14: E¤ect of productivity growth with increasing ka
km
when c�; ca < 1

(Figure 13 (a)).32 Remaining results are same as before, that is, when ka
km

non-increases, a� and

earnings inequality increase; when ka
km
� la

lm
too holds, workers shift to more analytical tasks; and

earnings of skilled workers and output always increase.
Proposition 6 examines the e¤ects in the �nal stage of mechanization, c�; ca<1:33

Proposition 6When cm < lm
km

ka
h
Ah(a

�)
Al(a�)

, c�; ca < 1,

(i) cm and ca decrease with km and ka; and a� decreases with ka
km
.

(ii) cl(a) and ch(a) decrease with km and ka:
(iii) wh and Y increase with km and ka, while wl increases when ka

km
non-decreases. wh

wl
decreases

with ka
km
.

Unlike the constant ka
km
case, in which a� and thus whwl are constant and wl increases over time,

a� and wh
wl
decrease with ka

km
and the e¤ect on wl is ambiguous when ka

km
decreases. As for task

assignment, while cl(a) (thus cm) and ch(a) decrease as in the original case (thus workers shift
to harder-to-routinize tasks), tasks performed by humans change in the skill dimension as well.
In particular, when ka

km
rises (falls), that is, when productivity growth is such that comparative

advantages of machines to humans in analytical (manual) tasks rise, unskilled workers shift to
more manual (analytical) tasks under ka

km
> (<) lalm , and skilled workers too shift to such tasks

under ka
km
> (<) hlm .

34 Figure 14 illustrates the e¤ect of productivity growth with increasing ka
km
on

task assignment for this case. Earnings of skilled workers and output rise as before.
Finally, Proposition 7 examines e¤ects of an increase in Nh

Nl
when ka

km
� la

lm
is allowed.

Proposition 7 Suppose that NhNl grows over time when cm<1.
(i) cm, a�; and cl(a) decrease, while ca (when ca < 1) and ch(a) (when c�<1) increase over time.

c� (when c�<1) falls (rises) when ka
km
� la

lm
( kakm �

h
lm
).

32For relatively high c, unskilled workers shift to more manual tasks when ka
km
2( la

lm
; h
lm
).

33c�<(>)ca when ka
km
<(>) h

lm
:

34When ka
km

rises (falls) under ka
km

< (>) la
lm
, unskilled workers shift to more manual (analytical) tasks at low c.

The same is true for skilled workers under ka
km

< (>) h
lm
. (See Figure 14.) Hence, at low c; both types of workers

always shift to more manual (analytical) tasks when ka
km

rises (falls).
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Figure 15: E¤ect of an increase in Nh
Nl
when ka

km
2( lalm ;

h
lm
) and when ka

km
> h
lm

(ii) wl (wh) rises (falls) and
wh
wl
shrinks over time.

(iii) Y increases over time under constant Nh+Nl.

Figure 15 illustrates the e¤ect of an increase in Nh
Nl
on task assignment when ka

km
2( lalm ;

h
lm
) and

when ka
km

> h
lm
. (c�=1 does not occur in these cases and ca=1 does not occur when ka

km
> h

lm
:)

As in the original case of ka
km
< la

lm
, skilled workers take over some tasks previously performed by

unskilled workers, i.e., a� decreases, and machines (skilled workers) take over a portion of tasks
performed by unskilled workers (machines) before, i.e., cl(a) decreases (ch(a) increases). However,
unlike before, cl(a) is downward-sloping on the (a; c) plane, and, when ka

km
> h

lm
, ch(a) too is

downward-sloping. Thus, when ka
km
> h

lm
; unskilled workers shift to harder-to-routinize and more

manual tasks, and skilled workers may not shift to more manual tasks (Figure 15 (c)). As before,
earnings of unskilled (skilled) workers rise (fall), earnings inequality shrinks, and output increases.

5.2 Contrasting the model with facts

Based on the propositions, it is examined whether the model with realistic productivity growth can
explain the long-run trends of task shifts, earnings, and earnings inequality in the real economy.

Two assumptions are imposed on comparative advantage of machines against humans and the
relative growth of the two abilities of machines. First, it would be plausible to suppose that
ka
km

< la
lm
has continued to hold until now (thus cl(a) and ch(a) are upward-sloping on the (a; c)

plane), because the proportion of tasks performed by machines seems to be still higher in more
manual tasks: consider the fact that the large majority of non-routine analytical tasks generally
associated with management, professional, and technical jobs and of non-routine "middle a" tasks
typical in occupations such as mechanics and nurses are yet to be automated.35

35As for machines that rely heavily on information technology, i.e., robots, software, and AI, the analysis by Webb
(2020) is informative. Based on an objective measure that quanti�es degrees to which tasks of particular occupations
are potentially displaced by machines, Webb (2020) �nds that occupations most likely to be substituted by robots
are low-wage and routine manual jobs mainly occupied by men without college education and those most exposed
to software are middle-wage and routine cognitive jobs occupied by workers with various levels of education, but
typically non-college graduates. By contrast, occupations most exposed to AI (machine learning algorithms) are
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Second, the history of mechanization and task shifts described in the introduction suggests that
km seems to have grown faster than ka until sometime in the 1990s, after which the growth of ka
appears to be faster because of the ever-increasing application of information technology in wide
areas.36 The supposed turning point would be not be far o¤ the mark considering that a decrease in
the employment share of production occupations, which are intensive in manual tasks, was greatest
in the 1980s and slowed down considerably after the 1990s, while a decrease in the share of clerical
occupations intensive in routine analytical tasks started in the 1980s and accelerated in the 1990s
(Autor, 2019). Note also that information technology seems to have contributed to the growth
of km more than the growth of ka initially (see footnote 35 also): CNC [Computer Numerical
Control] machines and industrial robots, widely used since the 1970s and the 1980s respectively,
raised productivities of machines to perform manual and relatively non-routine tasks considerably.
Hence, suppose that ka

km
falls over time when ca = 1; while when ca < 1, i.e., in the �nal stage of

mechanization, kakm falls initially, then rises.
Now, the evolutions of earnings levels and inequality are examined. The result when c�=ca=1

is almost same as the constant ka
km
case (Proposition 4), thus the model is consistent with the actual

trends in the early stage of mechanization. The model accords with the trends in the intermediate
stage too (except a decline of the inequality in the 1940s), because the result of the case c�<ca=1
is same as before when ka

km
falls (Proposition 5).

It is in the �nal stage of mechanization, i.e, when c�<ca<1; that the model with time-varying
ka
km
explains the trends much better than the model with constant kakm : First, the present model could

be congruent with falling or stagnant earnings of U.S. unskilled workers in the 1980s�early 1990s
and a large increase in the overall inequality after the 1980s (after the 1990s in many European
nations). This is because the e¤ect of productivity growth with decreasing ka

km
on their earnings

is ambiguous and the e¤ect on the inequality is positive when c�<ca<1 (Proposition 6); and the
growth of NhNl ; which contributes to raising their earnings and lowering the inequality (Proposition
7), greatly slowed down during the period. When the growth of manual ability of machines is higher
than the growth of their analytical ability, the negative substitution e¤ect of mechanization on
earnings is relatively strong and could dominate the positive complementarity e¤ect for unskilled
workers, who are engaged in relatively manual tasks; thus, their earnings could decrease and
earnings inequality rises even in the �nal stage of mechanization. Second, it is also consistent with
the sound growth of earnings of unskilled workers in the late 1990s-early 2000s and in the 2010s
(Autor, 2019), because their earnings increase when ka

km
rises under c�<ca<1:37 Third, although

the present model with two types of workers cannot capture the whole picture of the falling relative
wage of workers with skills for middle-wage jobs after the 1990s (Böhm, 2020) (the model with three
types of workers is analytically intractable), it yields the decreasing inequality when ka

km
rises under

c�<ca<1 and thus captures an important part of the development, the falling disparity between
workers with skills for low-wage jobs and those with skills for middle-wage jobs and more recently,
moderately high-wage jobs also (Autor, Goldin, and Katz, 2020).38 When machines improve mainly

high-wage and relatively non-routine cognitive jobs occupied mainly by those with at least college education, but the
economic importance of AI is much smaller than robots and software at present.
36 It is true that several components of the composite analytical ability ka, such as numeric ability, seems to have

been growing faster than the composite manual ability km for much longer periods. But remaining components, such
as analysis and decision-making abilities, seem to have grown slowly until recently.
37According to Autor (2019), composition-adjusted real wages of full-time workers of all education groups exhibited

sound growth in the late 1990s-early 2000s in the U.S. Thereafter, however, real wages fell or stagnated, except for
workers with post-college education, whose earnings also dropped after the Great Recession. In the 2010s, all groups,
particularly high school dropouts, have enjoyed strong earnings growth.
38Autor, Goldin, and Katz (2020) �nd that the growth of the wage premium of college graduates (a weighted
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in their analytical ability, the substitution e¤ect is stronger for skilled than for unskilled workers
and thus the inequality decreases.

As for the dynamics of task shifts, the result under c�=ca=1 is same as the constant ka
km
case,

so is the result under c�<ca=1 when ka
km

< la
lm
holds and ka

km
falls (Propositions 4 and 5): cl(a)

and ch(a) decrease and a� increase over time, unless
Nh
Nl
grows rapidly. Hence, the dynamics accord

with the long-run trend until recently, i.e., workers shift to harder-to-routinize and more analytical
tasks over time. By contrast, when c� < ca < 1; while cl(a) and ch(a) decrease over time (unless
Nh
Nl
grows rapidly) as before, unlike the constant ka

km
case, a� increases (decreases) when ka

km
falls

(rises) (Proposition 6). Hence, workers shift to harder-to-codify and more analytical tasks while
ka
km

falls, whereas after ka
km

starts to rise, they shift to harder-to-codify tasks overall and shift to
more manual tasks at low c (Figure 14 (a)). This is consistent with the shift from non-routine
analytical tasks as well as routine tasks to non-routine manual tasks after around the year 2000 in
the U.S. (Beaudry, Green, and Sand, 2016; see footnote 9 in the introduction for details).

In sum, unlike the proportionate growth case, the model with realistic productivity growth
is consistent with a large part of the developments after the 1980s. The result suggests that
mechanization driven by the rising productivity of machines and the increased proportion of skilled
workers are important in understanding the long-term evolution of task shifts, earnings levels and
inequality from the era of the Industrial Revolution until the present. Of course, other factors,
such as changes in union density (Farber et al., 2021) and increases in trade with and o¤shoring to
developing countries after the 1990s (Firpo, Fortin, and Lemieux, 2013), too are important,39 but
only the two factors considered in the paper seem to have in�uenced the evolution continuously.

If the rapid progress of information technology continues and ka
km

keeps rising, comparative

advantages of machines to two type of workers change over time, i.e., �rst, from ka
km

< la
lm
to

ka
km
2 ( lalm ;

h
lm
), then to ka

km
> h
lm
. The model predicts what will happen to the variables of interest

under such situations. As before, both types of workers shift to tasks that are more di¢ cult to
routinize (unless Nh

Nl
rises greatly, which is very unlikely). By contrast, unlike before, unskilled

workers shift to more manual tasks (even at high c), and, when ka
km
> h
lm
, skilled workers too shift

to such tasks (Figure 14 (c)). That is, workers shift to relatively manual and di¢ cult-to-codify
tasks: the recent shift to low-wage service occupations such as personal care and protective service
may continue into the future. However, the model predicts that earnings of unskilled workers as
well as those of skilled workers rise and earnings inequality shrinks over time.

Webb (2020) �nds that occupations most likely to be replaced by AI (arti�cial intelligence),
whose importance is growing rapidly, are high-wage and relatively non-routine cognitive jobs occu-
pied mainly by those with at least college education and, consistent with the model, AI is projected
to reduce the inequality between 90th and 10th percentiles of the wage distribution.40 The analysis
based on the model with two types of workers would not capture the whole picture, considering the
recent widening inequality between moderately and extremely high-skill workers (Alvaredo et al.,
2013). And, the extended model with more than two types of workers, which is not analytically

average of the college and post-college wage premium relative to high school graduates) slowed down considerably
after 2000 and the premium has stopped increasing in the 2010s, while the growth of the wage premium of post-
college graduates remains strong. This suggests that the earnings disparity between workers with undergraduate but
without graduate education and those without college education is falling recently.
39Farber et al. (2021) �nd negative e¤ects of union density on various measures of income inequality for the U.S.

economy, using data from 1936 to 2014. Firpo, Fortin, and Lemieux (2013) �nd that the e¤ect of trade and o¤shoring
on wage inequality is important after the 1990s and strong in the 2000s for the U.S. economy.
40He also �nds that AI is projected to increase the inequality between 99th and 90th percentiles of the wage

distribution.
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tractable, may not be su¢ cient to understand the evolution of the right tail of the distribution
at which, Alvaredo et al. (2013), based on international evidence, argue that institutional and
policy changes play important roles. However, the �nding on the e¤ect of AI, the stagnant wage
premium of college graduates (a weighted average of the college and post-college wage premium
relative to high school graduates) in the 2010s (Autor, Goldin, and Katz, 2020, see footnote 38
for details), and the increasing use of AI in marketing, trading, management, and other decisions
(such as the diagnosis of diseases) suggest that machines would replace a large number of tasks
presently performed by highly skilled workers in the not-distant future and thus possible e¤ects on
a great majority of the population might be captured by the present model.

6 Conclusion
Since the Industrial Revolution, mechanization (or automation) has a¤ected types of tasks humans
perform, relative demands for workers of di¤erent skill levels, earnings levels and inequality, and
aggregate output. This paper has developed a Ricardian model of task assignment and examined
how improvements of qualities of machines and an increase in the relative supply of skilled workers
a¤ect these variables. The analysis has shown that tasks and workers strongly a¤ected by the
productivity growth and the e¤ects on earnings levels and inequality change over time. The model
is consistent with long-run trends of these variables in the real economy, except a decline of the
inequality in the wartime 1940s and job polarization and the fall of the relative wage of workers
with skills for middle-wage jobs after the 1990s, though the model does capture an important part
of the latter development. The model has also been employed to examine possible future trends
of these variables when the rapid growth of information technology continues. It is found that
earnings of both skilled and unskilled workers increase and earnings inequality falls over time.

Several extensions of the model would be fruitful for analyzing the recent evolutions of the
labor market quantitatively. First, to understand job polarization and the related development of
earnings more accurately, the model with more than two type of workers, who di¤er in levels of
analytical ability or ability to perform non-routine tasks, and with realistic institutional and policy
features could be developed. Second, empirical works �nd that international trade and o¤shoring
have important e¤ects on earnings inequality after the 1990s, thus it may be interesting to examine
e¤ects of these factors and productivity growth jointly.
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Appendix A: Lemmas

This appendix presents lemmas examining the shape of (HL) and its relations with exogenous
variables illustrated in Figure 5 of Section 3, and a lemma examining the shape of (P) and its
relations with exogenous variables illustrated in Figure 4. Proofs are in Appendix B.

The next lemma presents the result when c�; ca < 1 (c� < (>)ca when ka
km
< (>) hlm ), the area

below cm = lm
km

ka
h
Ah(a

�)
Al(a�)

of Figure 3. Note that no assumptions are imposed on relations of analytical
abilities to manual abilities, although presentations in the lemmas might appear to suppose h > lm,
lm > la, and km > ka.

Lemma 1When cm< lm
km

ka
h
Ah(a

�)
Al(a�)

,c�; ca < 1, (HL) is expressed as
Nh
Nl
ln

�
km
Ak(a�)

�
=
Al(a

�)

Ah(a�)
ln

�
Ak(a

�)

ka

�
; when

ka
km
6=1; (16)

Nh
Nl
a� =

Al(a
�)

Ah(a�)
(1�a�); when

ka
km
=1: (17)

a� satisfying the equation decreases with Nh
Nl
and ka

km
.

Unlike the cases below, (HL) is independent of cm. a� satisfying the equation decreases with
Nh
Nl
and ka

km
. The next lemma presents the result when c� < ca = 1, the area below cm = lm

km

Ak(a
�)

Al(a�)

and on or above cm = lm
km

ka
h
Ah(a

�)
Al(a�)

of Figure 3. This case arises only when lm
km

Ak(a
�)

Al(a�)
> lm

km
ka
h
Ah(a

�)
Al(a�)

,
ka
km
< h

lm
:
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Lemma 2When cm 2
h
lm
km

ka
h
Ah(a

�)
Al(a�)

; lmkm
Ak(a

�)
Al(a�)

�
, c� < ca = 1, which arises only when ka

km
< h

lm
,

(HL) is expressed as

when
ka
km
6=1; Nh

Nl

km
lm

cm
km�ka

ln

�
km
Ak(a�)

�

=
1

h�lm
ln

24(km�ka) lmkm Ah(a
�)

Al(a�)
+(h�lm)cm

lm
km

Ah(a�)
Al(a�)

(hkm�lmka)
h

35+ km
lm

Al(a
�)

Ah(a�)

cm
km�ka

ln

24(km�ka) lmkm Ah(a
�)

Al(a�)
+(h�lm)cm

(hkm�lmka)cm
Ak(a�)

35;
(18)

when
ka
km
=1;

Nh
Nl

cma
�

lm
=

1

h�lm

�
ln

�
h

lm

Al(a
�)

Ah(a�)
cm

�
�Al(a

�)

lm
cm+1

�
: (19)

a� satisfying the equation decreases with cm and Nh
Nl
( @a

�

@cm
= 0 at cm= lm

km
ka
h
Ah(a

�)
Al(a�)

), and decreases

(increases) with ka
km

for small (large) cm.

Unlike the previous case, a� satisfying (HL) decreases with cm (except at cm = lm
km

ka
h
Ah(a

�)
Al(a�)

;

where @a�

@cm
= 0); and it increases with ka

km
when cm is large. Finally, the next lemma presents the

result when c�=ca=1; the area on or above cm = lm
km

Ak(a
�)

Al(a�)
of Figure 3. This case arises only when

lm
km

Ak(a
�)

Al(a�)
< 1, ka

km
< la

lm
:

Lemma 3When cm� lm
km

Ak(a
�)

Al(a�)
, c�= ca=1, which arises only when ka

km
< la

lm
, (HL) is expressed

as
Nh
Nl

�
1

lm�la
ln

�
lakm�lmka

(km�ka)lm�(lm�la)kmcm
lm
Al(a�)

�
+

kmcm
(km�ka)lm

ln

�
(km�ka)lm�(lm�la)kmcm

(lakm�lmka)cm

��
=

1

h�lm
ln

�
h

Ah(a�)

�
; when

ka
km
6=1; (20)

Nh
Nl

1

la�lm

�
ln

�
cmAl(a

�)

lm

�
+1�cm

�
=

1

h�lm
ln

�
h

Ah(a�)

�
; when

ka
km
=1; (21)

where a� 2 (0; 1) holds for any cm. a� satisfying the equation decreases with cm and Nh
Nl
; and it

increases with ka
km

(limcm!1
@a�

@cm
=limcm!1

@a�

@ ka
km

=0).

a� satisfying (HL) decreases with cm as in the previous case, while it increases with ka
km

(limcm!1
@a�

@cm
=limcm!1

@a�

@ ka
km

=0, though).

Finally, the next lemma presents the shape of (P) and its relations with km, ka; and r.

Lemma 4 cm satisfying (P ); which is positive, increases with a� and r, and decreases with km
and ka.

7 Appendix B: Proofs of Lemmas and Propositions 1-3

Proof of Lemma 1. [Derivation of the LHS of the equation]: When cm < lm
km

ka
h
Ah(a

�)
Al(a�)

and

thus cm< lm
km

Ak(a
�)

Al(a�)
, c�=cl(a

�)<1, the LHS of (HL) equals NhNl timesZ a�

0

Z cl(a)

0

1

Al(a)
dcda=

Z a�

0

cl(a)

Al(a)
da=

km
lm
cm

Z a�

0

da

Ak(a)
: (22)

Hence, when ka
km
6=1; the LHS of (HL) equals
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Nh
Nl

km
lm

cm
km�ka

ln

�
km
Ak(a�)

�
: (23)

Applying l�Hôpital�s rule to the above equation, the LHS of (HL) when ka
km
=1 equals

�Nh
Nl

1

lm

cm

lim ka
km

!1(1�
ka
km
)
lim
ka
km

!1
ln

�
a�
ka
km
+1�a�

�
=
Nh
Nl

cm
lm

lim
ka
km

!1

 
a�

a� kakm+1�a
�

!

=
Nh
Nl

cma
�

lm
: (24)

[Derivation of the RHS of the equation]: When cm < lm
km

ka
h
Ah(a

�)
Al(a�)

, ca= ch(1)< 1, the
RHS of (HL) is expressed asZ 1

a�

Z ch(a)

0

1

Ah(a)
dcda=

Z 1

a�

ch(a)

Ah(a)
da=

km
lm

Al(a
�)

Ah(a�)
cm

Z 1

a�

da

Ak(a)
: (25)

Hence, when ka
km
6=1; the RHS of (HL) equals

km
lm

Al(a
�)

Ah(a�)

cm
km�ka

ln

�
Ak(a

�)

ka

�
: (26)

By applying l�Hôpital�s rule to the above equation, the LHS of (HL) when ka
km
=1 equals

Al(a
�)

Ah(a�)

1

lm

cm

lim ka
km

!1(1�
ka
km
)
lim
ka
km

!1
ln

�
a�+(1�a�)km

ka

�
=�Al(a

�)

Ah(a�)

cm
lm

lim
ka
km

!1

 
�(1�a�)( kakm )

�2

a�+(1�a�)kmka

!

=
Al(a

�)

Ah(a�)

cm
lm
(1�a�): (27)

[Relations of a� satisfying the equation with Nh
Nl

and ka
km
]: Clearly, a� satisfying the

equation decreases with Nh
Nl
. Noting that, from (23) and (26), (HL) when ka

km
6=1 can be expressed

as km
lm

cm
km�ka

�
�Nh
Nl
ln

�
a�
ka
km
+1�a�

�
� Al(a

�)

Ah(a�)
ln

�
a�+(1�a�)km

ka

��
=0; (28)

the derivative of the above equation with respect to ka
km
equals

km
lm

cm
km�ka

 
�Nh
Nl

a�

a� kakm+1�a
��

Al(a
�)

Ah(a�)

�(1�a�)( kakm )
�2

a�+(1�a�)kmka

!

=
km
lm

cm
km�ka

km
Ak(a�)

�
�Nh
Nl
a�+

Al(a
�)

Ah(a�)
(1�a�)km

ka

�
; (29)

where the expression inside the large bracket can be rewritten as

� Nh
Nl
a�+

Al(a
�)

Ah(a�)
(1�a�)km

ka
=

�
ln

�
Ak(a

�)

ka

���1Nh
Nl

�
�a�ln

�
a�+(1�a�)km

ka

�
�(1�a�)km

ka
ln

�
a�
ka
km
+1�a�

��
=

�
ln

�
Ak(a

�)

ka

���1Nh
Nl

km
ka

�
a�
ka
km

ln

�
ka
km

�
�
�
a�
ka
km
+1�a�

�
ln

�
a�
ka
km
+1�a�

��
: (30)

The expression inside the large bracket of the above equation is positive, because the expression
equals 0 at ka

km
= 1 and its derivative with respect to ka

km
equals
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a�
�
ln

�
ka
km

�
�ln

�
a�
ka
km
+1�a�

��
; (31)

which is negative (positive) for ka
km

< (>)1: Thus, noting that ln
�
Ak(a

�)
ka

�
> (<)0 for ka

km
< (>)1,

(29) is positive. The derivative of (28) with respect to a� is positive from @ Al(a
�)

Ah(a�)
=@a� < 0. Hence,

a� satisfying (16) decreases with ka
km
when ka

km
6=1. When ka

km
! 1; (29) equals

lim
ka
km

!1

(
1

lm

cm

1� ka
km

1

a� kakm+1�a
�

�
�Nh
Nl
a�+

Al(a
�)

Ah(a�)
(1�a�)km

ka

�)

= �cm
lm
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ka
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!1

8><>:
�
�
a� kakm+1�a

�
�
Al(a

�)
Ah(a�)

(1�a�)( kakm )
�2 �

�
�Nh
Nl
a�+ Al(a

�)
Ah(a�)

(1�a�)kmka
�
a��

a� kakm+1�a
�
�2

9>=>;
=
cm
lm

Al(a
�)

Ah(a�)
(1�a�) > 0: (32)

where (17) is used to derive the last equality. Thus, the same result holds when ka
km
= 1 too.

Proof of Lemma 2. [Derivation of the equation]: Since c� < 1, the LHS of (HL) equals (23)
(when ka

km
6=1) and (24) (when ka

km
=1) in the proof of Lemma 1.

The RHS of (HL) when ca = 1, ch(1)�1, c� < 1, ch(a
�)<1, and ka

km
6=1 is expressed asZ c�1h (1)

a�

Z ch(a)

0

dcda

Ah(a)
+

Z 1

c�1h (1)

Z 1

0

dcda

Ah(a)
=

Z c�1h (1)

a�

ch(a)

Ah(a)
da+

Z 1

c�1h (1)

da

Ah(a)

=
km
lm

Al(a
�)

Ah(a�)
cm

Z c�1h (1)

a�

da

Ak(a)
+

Z 1

c�1h (1)

da

Ah(a)

=
km
lm

Al(a
�)

Ah(a�)

cm
km�ka

ln

 
Ak(a

�)

Ak(c
�1
h (1))

!
+

1

h�lm
ln

 
h

Ah(c
�1
h (1))

!
; (33)

where c�1h (1); i.e., the value of a when ch(a) = 1, equals, from (1) and (3),
Ah(a)

Ak(a)
=
lm
km

Ah(a
�)

Al(a�)

1

cm
, a(h�lm) + lm =

lm
km

Ah(a
�)

Al(a�)

1

cm
[�a(km�ka) + km]

, a =
lm

�
Ah(a

�)
Al(a�)

� cm
�

(km�ka) lmkm
Ah(a�)
Al(a�)

+ (h�lm)cm
: (34)

Hence, from (33) and

Ak(c
�1
h (1))=

�lm
�
Ah(a

�)
Al(a�)

�cm
�
(km�ka)+km

h
(km�ka) lmkm

Ah(a
�)

Al(a�)
+ (h�lm)cm

i
(km�ka) lmkm

Ah(a�)
Al(a�)

+ (h�lm)cm

=
(hkm�lmka)cm

(km�ka) lmkm
Ah(a�)
Al(a�)

+ (h�lm)cm
; (35)

Ah(c
�1
h (1))=

lm

�
Ah(a

�)
Al(a�)

�cm
�
(h�lm)+lm

h
(km�ka) lmkm

Ah(a
�)

Al(a�)
+ (h�lm)cm

i
(km�ka) lmkm

Ah(a�)
Al(a�)

+ (h�lm)cm

=
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Ah(a
�)

Al(a�)
(hkm�lmka)

(km�ka) lmkm
Ah(a�)
Al(a�)

+ (h�lm)cm
; (36)
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the RHS of (HL) when ka
km
6=1; equals

1

h�lm
ln

24(km�ka) lmkm Ah(a
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Al(a�)
+(h�lm)cm
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km

Ah(a�)
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Al(a�)
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(hkm�lmka)cm
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35: (37)

By applying l�Hôpital�s rule to the above equation, the RHS when ka
km
=1 equals

1

h�lm
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+

lm
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�
: (38)

[Relations of a� satisfying the equation with Nh
Nl
and cm]: When ka

km
6=1, the derivative

of the LHS�RHS of (18) with respect to a� equals

Nh
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lm
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1
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+ 1
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where the last equality is derived by using
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h
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i
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Ak(a�)
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<(>)1 ( * cm< lm
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Ak(a
�)

Al(a�)
). (40)

The derivative of the LHS-RHS of (18) with respect to cm when ka
km
6=1 equals
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where the last equality is derived by using
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Hence, when ka
km
6=1, a� satisfying (18) decreases with Nh

Nl
and cm ( @a

�

@cm
= 0 at cm= lm

km
ka
h
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).

The corresponding derivatives when ka
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Therefore, the same results hold when ka
km
= 1 as well.

[Relations of a� satisfying the equation with ka
km
]: Since (18) can be expressed as
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#9=; : (46)

Since the derivative on (HL) is examined, by substituting (18) into the above equation
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�)+(h�lm)cm

(hkm�lmka)cm
Ak(a

�)

#
9>>>=>>>; (47)

= kmcm
(km�ka)2

km
lm

8>><>>:
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Nl

h
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+1� km
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i
� Al(a
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The above expression is positive at cm = lm
km

ka
h
Ah(a

�)
Al(a�)

from (29) in the proof of Lemma 1 and is

negative at cm = lm
km

Ak(a
�)

Al(a�)
from (59) in the proof of Lemma 3. Further, the derivative of the

expression inside the big bracket of the above equation with respect to cm equals

�(km�ka) 1c2m
lm

hkm�lmka�
Al(a

�)
Ah(a�)

"
h�lm

(km�ka) lmkm
Ah(a

�)
Al(a

�) +(h�lm)cm
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�)

Al(a
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which is negative for cm2
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>
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> lm
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< h
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): Hence, there exists a unique cm2( lmkm
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h
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Al(a�)

; lmkm
Ak(a

�)
Al(a�)

) such
that (46) is positive (negative) for smaller (greater) cm.

When ka
km
! 1, (46) equals
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= �

8<:hNhNl + Al(a
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Ah(a�)

i
a�2cm
lm

�
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�
1�cm

Al(a
�)

Ah(a�)

��
1
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Ah(a
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Al(a
�) �1

�
(h�lm)2

9=; : (50)

The expression is positive at cm = lm
h
Ah(a

�)
Al(a�)

from (32) in the proof of Lemma 1 and negative at

cm =
lm

Al(a�)
from (61) in the proof of Lemma 3. Further, the derivative of the expression with

respect to cm is negative. Hence, the same result holds when ka
km
= 1 as well.
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Proof of Lemma 3. [Derivation of the equation]: The LHS of (HL) when c� = 1, cl(a
�)�1

and ka
km
6=1 equals NhNl timesZ c�1l (1)

0

Z cl(a)

0

dcda

Al(a)
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Al(a)
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=
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!
+
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lm�la
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Al(c

�1
l (1))

Al(a�)

!
; (51)

where the value of c�1l (1); i.e., a when cl(a) = 1, equals, from (2) and (3),
Al(a)

Ak(a)
=
lm
km

1

cm
, �a(lm�la) + lm =

lm
km

1

cm
[�a(km�ka)+km]

, a =
lm(1�cm)

(km�ka) lmkm � (lm�la)cm
: (52)

Hence, from (51) and

Ak(c
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�lm(1�cm)(km�ka)+km
h
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i
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=
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; (53)

Al(c
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h
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i
(km�ka) lmkm � (lm�la)cm

=
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(lakm�lmka)

(km�ka) lmkm � (lm�la)cm
; (54)

the LHS of (HL) when ka
km
6=1 equals

Nh
Nl

�
1
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�
lakm�lmka
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��
: (55)

Applying l�Hôpital�s rule to the above equation, the LHS of (HL) when ka
km
=1 equals
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=
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[a� 2 (0; 1) for any cm]: a� < 1 is obvious from the equation. Since cm � lm
km

Ak(a
�)

Al(a�)
, a� =

0 is possible only at cm = 1. However, at cm = 1, the equation becomes
Nh
Nl

1
lm�la ln

�
lm

Al(a�)

�
=

1
h�lm ln

�
h

Ah(a�)

�
and thus a�>0.
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[Relations of a� satisfying the equation with Nh
Nl
; cm; and ka

km
]: Since the derivative of

the LHS�RHS of (20) and (21) with respect to a� equals Nh
Nl

1
Al(a�)

+ 1
Ah(a�)

> 0; a� satisfying the

equation decreases with Nh
Nl
.

When ka
km
6= 1, a� satisfying (20) decreases with cm, because the derivative of the expression

inside the large curly bracket of (20) with respect to cm equals�
1� (lm�la)kmcm

(km�ka)lm
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limcm!1
@a�

@cm
=0 is clear from the above equation.

Since (20) can be expressed as
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when ka
km
6=1, the derivative of the expression inside the large curly bracket of (20) with respect to
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equals
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The derivative is negative because the expression inside the large parenthesis of (59) equals 0 at

cm =1 and, when ka
km
< (>)1, it increases (decreases) with 1�cm
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km

)lm

la�lm ka
km

and thus decreases with

cm. Hence, a� satisfying (20) increases with ka
km

when ka
km
6=1. limcm!1 @a�
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=0 is clear from the

above equation.
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where la�lm > 0 from lm
km

Ak(a
�)

Al(a�)
< 1, 1 < la

lm
. Thus, the same results hold when ka

km
=1 too.

Proof of Lemma 4. [Relations of cm satisfying (P) with a�; km; ka; and r]: Derivatives of
the LHS of (P) with respect to a�, cm; km; and ka equal
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r
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Z 1
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> 0; (62)
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where cl(a�) = ch(a�) = c�; 1
cl(a)Ak(a)

= lm
km

1
cm

1
Al(a)

; and 1
ch(a)Ak(a)

= lm
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Ah(a
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Al(a�)
1
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1
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are used to
derive the equations. The results are straightforward from the equations.

[(P) does not hold at cm = 0]: Noting that cl(a) = km
lm

Al(a)
Ak(a)

cm and ch(a) = km
lm

Al(a
�)

Ah(a�)
Ah(a)
Ak(a)

cm;

when cm!0, the LHS of (P) becomes
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Hence, (P) does not hold at cm=0:

Proof of Proposition 1. At cm=1, cl(a); ch(a) >1 from (13), thus (P) equals

lm
km
r

Z a�

0

da

Al(a)
+
lm
km

Ah(a
�)

Al(a�)
r

Z 1

a�

da

Ah(a)
= 1: (67)

When km is very small, the LHS of the above equation is strictly greater than 1 for any a� 2 [0; 1]
(thus, (P) does not hold for any cm and a� from Lemma 4), or a� satisfying the equation is weakly
smaller than a� 2 (0; 1) satisfying (HL) at cm=1 (a� 2 (0; 1) holds on (HL) from Lemma 3). In
such case, there is no a� 2 (0; 1) and cm < 1 satisfying both (HL) and (P), and thus machines
are not employed, i.e., cm=1, in equilibrium, where equilibrium a� is determined from (HL) with
cm=1.
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When km becomes large enough that a� satisfying (67) is greater than a� 2 (0; 1) satisfying
(HL) at cm=1, an equilibrium with cm<1 exists from shapes of (HL) and (P). The dynamics of
cm and a� are straightforward from shapes of the two loci. The dynamics of c� and ca are from

c�=min
n
km
lm

Al(a
�)

Ak(a�)
cm;1

o
, ca=min

n
h
ka
km
lm

Al(a
�)

Ah(a�)
cm;1

o
, and the assumptions that ka

km
is time-invariant

and satis�es ka
km
< la

lm
. The dynamics of cl(a) and ch(a) are from those of the other variables.

Proof of Proposition 2. (i) When cm � lm
km

ka
h
Ah(a

�)
Al(a�)

; earnings of skilled workers increase over
time from Propositions 4 (iii) and 5 (iii) in Web Appendix. Earnings of both types of workers
increase when cm < lm

km
ka
h
Ah(a

�)
Al(a�)

from Proposition 6 (iii) in Web Appendix. (ii) is straightforward
from Proposition 1 and the earnings equations (eq. 15).

(iii) Y decreases with the LHS and RHS of (HL) from (8). When c� = ca = 1 and ka
km

6= 1,

the RHS of (HL) equals 1
h�lm ln

�
h
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�
from Lemma 3, which decreases with the growth of km

and ka with constant ka
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from Proposition 1. When c� < ca < 1 and ka
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6= 1, the RHS equals
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from (26) in the proof of Lemma 1, which decreases with the productivity

growth from Proposition 1. When c� < ca = 1 and ka
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6= 1, the derivative of the RHS with respect

to cm equals, from (41) in the proof of Lemma 2 and (18),
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and the derivative with respect to a� equals, from (39) in the proof of Lemma 2 ,
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From signs of the derivatives and Proposition 1, the RHS of (HL) decreases with the productivity
growth. Hence, Y increases over time when ka

km
6= 1. The result when ka

km
= 1 can be proved

similarly.

Proof of Proposition 3. Since an increase in Nh
Nl
shifts (HL) to the left on the (a�; cm) space

from Lemmas 1�3, the result that cm and a� decrease is straightforward from Figures 8�10. Then,
wl =

lm
km

r
cm
rises and wh
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= Ah(a

�)
Al(a�)

falls. Since c� � min
n
km
lm

Al(a
�)

Ak(a�)
cm;1

o
; c� falls when c�< 1 from

ka
km
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lm
, da�

d
Nh
Nl

< 0; and dcm

d
Nh
Nl

< 0. cl(a) decreases from dcm

d
Nh
Nl

< 0: Proofs of the results for ch(a); ca,

wh; and Y are in the proof of Proposition 7 in Web Appendix.
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