Appendix C Proofs of Lemmas and Propositions

Proof of Proposition 1. (i) The statement is true iff the RHS of (mU) is greater than that of
(mS). From these equations (multiplied by ~¢),
Y885+ (B—)N1 (1 — H)(l = 7aws —wy) +[ox (1 —X) + Bwd @ TG — gbe) + @— B30)]
> 7682 (B+7) N1 (L= Holl = m)ws —wa) + [px (L —X) +Bwd @[~ (@hs —T2) + (@—dbs)]
& 28N (1~ Ho)l —1)ws —wi) +[px (1 —x) +Bwd @72 (dos — d30) >0 (C1)
Given the initial condition qés :qu =0, (C1) is true for the initial period and thus q%s > q;U
for the second period from (13), (14), and the initial condition ¢} g=1. Then, (C1) holds for the
second period and qés > q;U for the third period. Continuing in this way, one can prove (C1) for
all periods.
(ii) (a) The statement is true iff the RHS of (M) is greater than that of (mS). From these
equations (multiplied by ~0),
Y851+ (341 — NiY1 — Ho1 — 7w —w) + [px 1 =)+ Bwd @ — )
>7682— (B+7) N1 (1= Hol = 7w —wa) +[px (1L =X) +Bwd @—T2) [~ (@bs — @) + (@ — )]

& 76 (1= 52) + +NL — Hal— o, —wa) > = [pxU =)+ 0wd| @1 —D° ~ G|~ [Gbs—T) + @—dbs)] |

(C2)
The RHS of (C2) equals [px(1—x)+fwg times
— @@= N)? @ —T) N1 [~2(g5s —T9) + N1 @ —T) ]}
= @1~ [@N1—1D) @1 —T) —2N1 (s —T2) | <2N1—1 < (N1)?, (C3)

where qé 5>y is used to prove the second last inequality. Hence, (C2) is true under Assumption
2.

(b) The majority are less likely to have a national identity than the minority’s unskilled iff the
RHS of (M) is greater than that of (mU). From these equations,

151+ G+~ N~ HL =), — ) + X —0+ BTy ~7°
>0+ (=W (L= Hall =, —w)+ [px (=) + ) =TT ) + )]
78 (51-5) + = BN~ D)1= HalL = o= > = [px( =0+ Bed {01~ ~ G~ [Ga—aku) + GT—aiu)] -

(C4)
where the RHS equals [px(1—x)+(w{ times
@ —T2) [@N1— 1)@, — o) +2N1 (@ — i) |
< (=B[N =) 1-T)+2NTo] = =T [N~ )+7o] < (M1 )?, (C5)

where the last inequality holds because the derivative of the second last expression with respect to
qy equals —[2N1 —1)+q,]+ (1 —7y) and thus the expression is highest at g, = 1 — Nj.

Hence, when yv—(32N;—1) > 0 & N; < %—Jg’, (C4) is true under Assumption 2. When Nj > 52—?,
(C4) holds for large Hs, but it may not hold for small Hy. m
Proof of Proposition 3.

To prove the results, we use Figures 1—3 that show the positions of (M) and (mU) (with p;g=0
and with pjg=1) in the initial period and in the steady state, and of (mS) in the initial period on
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Figure C1: Relationship between initial (Ha, é\z/v) and steady-state identity when 3 <~ and Hj is
constant
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Figure C3: Relationship between initial (Ho, éjvv) and steady-state identity when 3>, Ny > ’62—?,
and Hs is constant

the (Ho, SA*]/V) plane. The steady-state dividing lines are for when p]¢=p5¢=p5;; =0 does not hold,
in which case ¢]g=¢5¢=¢5; from Lemma A3.

Relative positions of the dividing lines for given period and p;g are based on the following
theoretlcal results. (mU) is located above (mS) from Proposition 1 (i), and unless 8 > 7 and
N > & 25 (M) is above (mU) from (ii)(b) of the proposition. When >~ and N; > %7 , (mU)
may be above (M) for small Hy from Proposition 1 (ii)(b), and Figure 3 illustrates such a case.
(M) and (mU) with p;g =0 are located above (M) and (mU) with p;g =1 respectively, because
7 > (=)0 when p1g=1(= 0). The dividing lines in the steady state are below the corresponding
ones in the initial period from Lemma A2 (ii)—(iv). At Hg =1, the vertical level of initial (M)

on the (Ha, Sy) plane equals :S’vl—i— 510X (L—x) +Bwg] (1 — Ny)?, that of initial (mU) and (mS) equals
:9;—1% [px (L =X) + Buw,] (N1)* , while the vertical level of steady-state (M) is S1 and that of steady-state

(mU) and (mS) is Ss. Relative levels of these values are from Assumption 2.

(i) Given Ha, when Sy is very high so that p;g=pag=poy =1 in the initial period (i.e., (Ha, 5”7\;)
is on or above initial (M) with p;jg=1 and when 3>~ and Ny > 52% [Figure 3], also on or above
initial (mU) with p;g =1 on the (Ho, EIVV) plane), p1g = pas =poy =1 holds in subsequent periods
because (M) and (mU) shift downward over time on the (Haz, Sy) plane from Lemma A2 (ii).

When p15=0, pas=poy =1 initially (i.e., (Ho, S'JVV) is on or above initial (mU) with p;g=0 and
below initial (M) with pyg=0) and Sy is relatively high for given Hy (i.e., (Ha, Sy) is on or above
steady-state (M) with p;g=1), society shifts to p1g=pas =poy =1 eventually (i.e., (Ha, S”\z/v) is on or
above (M) with p;s=1, when 8>~ and N; > %—? [Figure 3], also on or above (mU) with pjg=1)
and stays in this state, because (M) and (mU) shift downward over time from Lemma A2 (iii).



When p15=0, pas =1, pory =0 initially (i.e., (Ha, S'JVV) is on or above initial (mS) with p;g=0 and
below initial (M) and (mU) with p;s=0) and Sy is relatively high (i.c., (Ha, Sy) is on or above
steady-state (M) and (mU) with p;s=1), occuring only when 3>~ and N; > %Z, society shifts
to p1s =pas =pouy =1 eventually (typically, after shifting to p1g=0, pas =poy =1) since (M) shifts
downward over time and (mU) and (mS) shift downward in the long term from Lemma A2 (iv).

When p1s=1, pags=1, poy =0 initially (i.e., (Ha, S’TV) is on or above initial (M) with p;jg=1 and
below initial (mU) with p;g=1), which may occur only when 3>~ and Nj > %‘ (Figure 3), and
Sy is relatively high (i.e., (Ha, Sy) is on or above steady-state (mU) with pig = 1), society shifts
to p1s=pas=pov =1 because (M) and (mU) shift downward over time from Lemma A2 (iii).

To summarize, pjg=pig= p2U = 1 when (Hs, 37\7) is located on or above steady-state (M) with
prs=1, and when 3>~ and N; > 22 (Flgure 3), also on or above steady-state (mU) with pjg=1.

When p1g =1, pas=1, poy = O 1n1t1ally (i.e., (Ha, 5’7\]) is on or above initial (M) with pjg=1
and below initial (mU) with p;jg=1), occuring only when 3>+ and N; > 22 (Flgure 3), and Sn

is not very high (i.e., (Ha, S’TV) is below steady-state (mU) with p1g=1), somety stays in p1g =1,
pas =1, pay =0 because (M) and (mU) shift downward over time from Lemma A2 (iii).

When 8>+, N3 > ﬂ+7 (Figure 3), p15=0, pas =1, poy =0 initially (i.e., (H2, SA’]/V) is on or above
initial (mS) with plng and below initial (M) and (mU) with p;g=0), and Sy is relatively, but
not very, high (i.e., (Hz, Sy) is on or above steady-state (M) with p1g=1 and below steady-state
(mU) with p;g=1), society shifts to p1g=1, pag=1, poyy =0 because (M) and (mU) shift downward
in the long term from Lemma A2 (iv).

To summarize, pjg=1,p5¢=1, p5;; =0 when 3>, N1 > ’8+7 (Figure 3), and (Ha, SA’]/V) is located
on or above steady-state (M) with p;g=1 and below steady- 5tate (mU) with p;g=1.

The result on the steady-state cultural composition is from Lemma A3 (i) and (ii). The negative
relation between Sy ~ and §7 or §' holds because, as Sn v is lower, the period during which cultural
assimilation proceeds, i.e., p1g =0, pas=1,p2y =0 or 1, is longer. The proportion of the minority
element in the integrated culture is highest when p1g=pas=poy =1 always. -

(ii) Given Hjy, when Sy is low enough that p;g =pog =poy =0 initially (i.e., (Ha, Sn) is below
initial (mS) with p;g=0), p1s = pas = poy =0 holds in subsequent periods, because gas = gary =0
continues to hold and thus (mS) does not shift from Lemma A2 (v) and (13).

Society does not shift to p1g=pass =poy =0 from other combinations of pig,psg, and porr because
(mS) with p;g =0 in the initial period is at a higher position than or the same position as those
in subsequent periods on the (Ha, 37\7) plane from Lemma A2 (i). ¢jg¢=1 and ¢3¢ =¢3; =0 is from
Lemma A3 (iv) and the result that p;g=pag=poy =0 always holds.

(iii) When p15=0, pas =poy =1 initially (i.e., (Ha, S’]v\/') is on or above initial (mU) with p;5=0
and below initial (M) with pyg =0) and Sy is relatively low for given Hy (i.e., (Hz, Sy) is below
steady-state (M) with p1g=0), p1s=0, pas=poy =1 holds in subsequent periods because (M) and
(mU) shift downward over time on the (Hy, Sy) plane from Lemma A2 (iii).

When p15 =0, pes =1, poy =0 initially (i.e., (Ho, §]/V) is on or above initial (mS) with p;jg=0
and below initial (mU) with p;g=0; when § >~ and N; > %l [Figure 3], also below initial (M)
with p1g=0) and Sy is relatively high (i.c., (Ha, Sy) is on or above steady-state (mU) with pg=0;
when >~ and Ny > 52—?1, also below steady-state (M) with p;g =0), society shifts to p1g =0,
pas = pay = 1 eventually and stays in this state, because (M) shifts downward over time, so does
(mU) in the long run, from Lemma A2 (iv), and (mS)s in subsequent periods are not located above
the one in the initial period from Lemma A2 (i).

When p15=0, pas =1, poy =0 initially and Sy is relatively low (i.e., (Ha, S'IVV) is below steady-



state (mU) with p;g =0; when 8>~ and Ny > 52 25 , also below steady-state (M) with p1g =0),
society stays in this state for the same reasons as the previous case.

To summarize, pjg = 0,p3q =psy =1 when (Hz, Sy) is on or above initial (mS) with p;5 =0,
as well as steady-state (mU) with p1g = 0, and below steady-state (M) with p1g = 0; pjg = 0,
Phe=1,p5; =0 when (Ha, 5”7\/) is on or above initial (mS) with p;s=0 and below steady-state (mU)
with p1s=0, when 8>~ and Ny > %7 (Figure 3), also below steady-state (M) with p;g=0.

s =0g=¢q5y=11s from Lemma A3 (iii) and the result that only the society starting with
p1s =0 and never satlsfylng pis=1 ends up with plS—O pQS 1,p5;=0or 1.

(iv) The result on S; (S3) holds because as Sy is lower (S5 is higher), (M) [(mS)] is located at a
lower (higher) position on the (Ha, S N) plane. The result on wy holds because as wy is higher, (mS)
in the initial period, whose last term equals [px (1 —x)+ 6w (N1)2, is located at a higher position.
The level of w, does not affect the likelihood of universal national identity because steady-state
(M) does not depend on wy when ¢jg=¢55=¢5;;. The result on Hy is from the figures. The result
on g# or g’ can be proved similarly to the corresponding result in (i). m

Proof of Lemma 2. (i) The claim is proved if the difference in utility between when a group
1 individual takes education and when she does not is positive at H; =1. To compute the utility
when not taking education, the value of p;y needs to be specified. It is reasonable to suppose
p1v > p1s since for a group 1 individual with cultural variable ¢, from (9), (10), (13), and (14),

po=1(=0) & ujyy > (<)uiy

&Y6Sn > (<851~ (B—)1—7 @1~ D)+ [px LX) +Bwd @~ R, —7, —9) (C6)

and thus the RHS of the equation is smaller than that of (M). Hence, the cases to be examined
are prs=pw =1, prs=pw =0, and p1s=0,prv=1. ‘
When pi1s=piy =1, for a group 1 individual with ¢, from (7), (9), (14), and the fact v%,o=

uY o6+ (L+1)a, the difference in utility between when taking education and not at Hy =1 equals
_ B-lw,—w
T=1R )

(note Rl

visy —vipn = =D {ws —w) = Blws —0) — @—wy)]} — (1 +1)e
— (1= 7wy ) (1— B{(L— NoYL — Hy)— [Ny + (1~ N ) — 1+ 1)
=[1—-7)ws—wy){1+L[@N1—1)+2(1—Ny)Hz]} —(1+n€ > 0 under Assumption 3. (C7)

When p1g=pi1y =0, from (8), (10), (13), 7=0, and w; = ws, the difference in utility between
when taking education and when not at H; =1 equals

Visi—vin = (We—wy)—Blws—W1) — @1 —wy)]—(1+7)E
= 1+ ws—wy)—(1+7re>0 under Assumption 3. (C8)

When p;5=0,p1y=1, from (8), (9), (13), (14), and 7=0, the difference in utility equals
vhs1 vl = (s —w,) = Blws ) ~ @—wa)]+9| -5 (S — 1) + @ - )|
~lox(—0+Bwd|lal ~7) ~ (@ 7| ~1+n)e

> (Ws—wy) —B(ws—w1) — @—wy)|— (1 +r)e— @1 —w) (from (M) with 7 <)
= (Ws—wy) —P[ws—w) — @—w,)|—1+nre > 0 from the first equation of (C7). (C9)

The differences in utility are all positive and thus H;=1.



(ii) From Propositions 1 and 2, the cases to be examined are pag =poy =1, pag =1,p2v =0,
and p1s = pas = pov = 0 when ¢4 is homogenous within each class. As shown below, q%s can be
heterogenous, in which case pag € (0, 1), poy =0 also occurs.

(a) When pas = poy = 1, for a group 2 individual with ¢, from (18), (20), and vi,, =
w0+ (147)a, the difference in utility between when taking education and when not equals

vhsn—vhy = (=7 {ws— wu) —Blws —w) — @ —wy)]} — (L +7)e, (C10)
Lws—
where 7 = ﬁ ad When pis=1 and 7=0 when p;5=0,
1—i—7 w

which is positive under Assumption 3 from the first equation of (C7).
When pog=1,poy =0, from (18) and (21), the difference in utility equals

vion—vhn = (1= {(ws—ws) = Blws 1)~ @ wi)] +y@-T} +76(Sy - 52)
X=X+ B -0’ ~ G- ad)’ | - 1-+7)e
= (=D{1-Bl0~ V)1~ H) — Hol +3Nil— H }ws —w) +76 (S -
~ X0+ Bwgl| @) - @2~ ad)’| - (1), (C11)

where 7 = ﬂi# when p1g=1 and 7=0 when p;5=0.

&

When pi1g=1, from (M),
RHS of (C11) > (1—7)[1+8Ha-+~v(1— Hy)] (ws —w,) +75(’svl—’s‘g

Hox—0+8we{@ -2~ |G-’ - @—a)’ |} - 147
>1—7)[14+8Hy+~v(1— Ho)|ws—wy,)

+px L —x)+Lwg] {(N1)2+@1 —6)2— [(‘ ) (_2 q2) }} (14re (from Assumption 2), (C12)
which is positive under Assumption 3 because
(N1)2+@1—6)2—[@—qé)Q—@z—Cé)Q} = NP 4+@-9°— @)@ +T—d)
W)’ +@ ~9* - [@)°~ (@)
= (V) +(@1)*+(@2)° 23,7
ND*+@ —7)° - 2N, @ — )
= [(N)—@—)*+2N1(1—T) @ —To) > 0.

Hence, when pog=poy =1 (p15=0 or 1) and when p;g=1, pas =1, poy =0, the utility return to
education is positive and thus Hs=F5 is an equilibrium for any F5.

(b) When p1g5=pos=por =0 is realized in adulthood if Hy=F» in childhood, from (19), (21),
and v oo =uY o6+ (41)a, the difference in utility equals

Vs~ Varry = [1= B —2Hy)] (s —wy) — (L+7)2. (C13)

v

Thus vh 52 U2U2 <0 when Hj is close to 0 from §>1, Whereas v252 v2U2 >0 when 1-8(1—-2H9) >
2 Hy>5(1 35) from Assumption 3. Hence, the unique H €(0,301- 3[5)) exists such that Ho =0,

or Hy is smaller than the lowest Hs satisfying p1g = pag =pory =0, for Fi < H2 , and Ho = Fy for
greater Fs.



The remaining case is when p;g =0, pag € (0, 1], poy =0 is reahzed in adulthood (p2s =1 at
least in the initial period) if Hy = F» in childhood. When N; < <:>ﬁ( Nj) —~yNy >0, which
is true when (3>, vigy —vh;, increase with Hy from (C11) (note 7=0 from p;3=0). (Figure
4 in the proof of Proposition 4 is helpful for understanding the proof for this case.) Because

Sy N— Sg is greater than when pyg=psgs=poyy =0 for given H2 from (mS), the critical Hy satisfying
Vs N v2U2—0 is smaller than H . In the initial perlod g5 is homogenous thus the critical Hs is

common to everyone which is denoted by H. <><>(S N— Sg) where Hj 00/ (S N— Sg) <0 from (C11). Then,
Hy =0 for F5 <H2 (SN Sg) and H2 =F, for greater F2 Since H 'Sy —S9) <0, there exists the
unique Sy N— Sg satlsfymg HSO(S N— Sg) 0. When Sy N— SQ is greater than this level, Hy = F5 always.

HgO(S 'N— 5’2) for the initial period determines whether Ho =0 or Hy = F5 in subsequent periods
as well, as shown next. The second last term of (C11) equals —[px (1 —X)+[wq] times

@—a) —@—d) = @0 db+d—d)
= Ni(1—G) [N (1-7)—2(05—7T)] , (C14)

where the second equation is from (qy)' =g, =1.

When F, <H§>O(SN Sy) and thus Hy =0 hold in the initial period, () =xgo+(1— )¢, =0 from
pou =0. Hence, (q— q2) (@2— q2) and thus Hg <>(S N— Sg) are time-invariant. Therefore, Ho =0 for
F5 smaller than the initial H. <><>(S N— Sg) remains true in subsequent periods.

When F» _Hgo(SN Sy) and thus Hy = F initially, (C14) in the initial period, (V})2, is greater
than the values in subsequent periods because qés >qo. Hence, the initial H§>o(§]vv—:5’;) is greater
than the critical values in subsequent periods. Therefore, when F5 ZH§O(§V—§;) initially, Ho = F>
continues to be true subsequently. (When Hs increases over time, after the initial period, the
level of ¢4 becomes different depending on when one becomes skilled, implying that Hgo(éjv—g;)
differs for those with different ¢bg. The result remains unchanged because levels of Hgo(gv—:q;) in
subsequent periods are smaller than in the initial period for any ¢4¢. In this case, (mS) also differs
for those with different g5, implying that pag € (0, 1), po =0 can occur.)

When N; > FQ%, which occurs only when <, (C11) decreases with Hy. (Figure 7 in the
proof of Proposmon 4 is helpful for understandlng the proof for this case.) As before, Hy=F5 for
any Fp> H2 This is because vggy v2U2 >0 for Fy> H2 on the d1v1d1ng line between pog=1 and
p25=0, (mS), from (C13), and thus vigy— v2U2 >0 for greater SN Sg For F5 <H2 , when SN Sg
is greater than the level at which (mS) and Hy = H§> mtersect where UQSN Vg = 0, Hy = I
because vés N—véUQ decreases with Hs. In the initial perlod q2 is homogenous, thus (mS) and the
critical Sy N— Sg are common to everyone. Hence, when Sy N— 52 is smaller than this level, the unique
HgQ(SN Sy) satisfying HYO (Sy—S52) >0 exists and Hy =F, for Fj <H§><>(SN Sy, HQ—Hgo(SN —5)
for greater 5 satlsfylng p1s =0, pag = 1, poy = 0. Further, since H<><> (SN Sg) > 0, the unique
SN Sg with HOO(SN Sg) 0 exists, and Ho =0 when SN 52 is smaller than this level.

In subsequent periods, Hg <>(S N—Sg) changes over time, since (C14) varies over time due to Hy >0
and peg =1, poy=0. (It can be shown that initial HSQ(S N— 5’2) is smallest and H2 (S N— 5’2) increases
in early periods.) Hence, when Hs changes over time either because F(< initial HSO(S’TV—SE))
increases or because F» is close to H. 00(5’7\/ g;) ¢4 and H (5’7\7 g;) become heterogenous, with
H <><>(S N — 5'2) increasing in g¢ss. Therefore, when Hs evolves, Hs in subsequent periods is given
by: when Sy — 93 is greater than the level at which (mS) for those with min;{gis} and Fy = HY
intersect, Ho = Fb; when Sh N— 5’2 is smaller than this level and greater than the level satisfying
Hgo(g\]/v—g;, maxi{qgs}) =0, Hy=F, for F; <max {0, Hgo(g\]/v—g;, mini{qgs})}, Hyc



(maX{O, HSQ(S’TV—:S:;, mini{qés})}, F2> for Fr e <max{0, Hgo(gjv—g;, mini{qés})},min{Hg,Hgo(g\;v—/S\;, maxi{qgs})D,

and Hy= min{Hé> , HOO(S'\;V —S,, maxi{qgs})} for greater Fy, where time-variant HOO(S'TV—:Q\;, max;{¢s})
(HgO(SN Sg,mlnz{qw})) is the value of HgO(SN Sy) for those with hlghest (lowest) gbg; when
Sn—S3 is smaller than the level satisfying HY O(SN—Sa, max;{gss}) =0, Hy=0. [(mS) differs depend-
ing on q25 (mS) with q25 max,{qQS} (QQS mlnz{q%}) intersects with HOO(SN Sg,maxl{qw})
(HOO(SN Sg,mlnz{qQS})) at Fo=HY. pase (0,1), pQU 0 in the region between the two (mS)s.]

To summarize the results when 3>~ or Ny < -+=— 5 + , when Sy N— Sg is greater than the level such
that H. <><>(5’ N— 5’2) 0, Hy=Fy; when Sy N— Sg is smaller than this level and greater than the level
satisfying H2 (SN—B'\;) = H2 , Hy =0 for F5 € [(),H2 (SN—SQ)) and Hy = F5 for greater Fb; and

when Sy — S5 is smaller than the level satisfying Hgo(g\;v—g;) —HY, Hy=0(=F) for Fy< (>)HY,
where Hgo(g}/v :92) is the critical value in the initial period.

The results when 3 <y and Ny > ﬂ_f‘y are summarized as follows. When S’]vv—g; is greater
than the level at which (mS) for those with min;{¢gi¢} and Ho = Hg intersect, Hy = F5; when

Sn—3Ss is smaller than this level and greater than the level satisfying HY O(Sn—2Ss, max; {gss}) =0,
Hy=F; for F; <max {0, HSO(STV—SE, mini{qés})}, Hye (max {0, HSO(S’;/V—:S’VQ, mini{qgs})}, Fg) for
e (max {O, H§><>(§7V—§§, mini{qés})}, min {Hé> , Hgo(éjvv—:g;, maxi{qés})D,
Hy =min {Hg,HSO(S’TV—/S\;,maXi{qéS})} for Iy € {min {Hg,Hgo(g;V—/S\;,maXi{qgs})}, Hg), and
Hy=F for F5> Hg; when 5‘7\/ :92 is smaller than the level satisfying H§><>(§]’V :S';, maxl{qés})
Hy=0E=F,) for Fy < (>)H2 (HgO(SN Sg,maxl{qw}) and HgO(SN Sg,mmz{q%w}) change over
time, and if Hy is time-invariant, they are the same and equal to H. <><>(S N—S5).) m
Proof of Lemma 3. (i) The proof that Ha non-decreases over time when Hy = F5 below applies
to Hy and Fj as well. Then, the result follows from F; =1 in the initial period and Lemma 2 (i).
N (11/)\/ [Proof that Hy usually non-decreases] When Ha = Fy for any Fj, which is the case when
SNy — Sz is sufficiently high from the proof of Lemma 2 (ii), Ha non-decreases if A\[(l —71)ws+T]>¢
for any Hs. It can be shown that (1—7)ws+T increases with Ho and thus is lowest at Hy =0 from
the equations similar to (C15) and (C16) below. Then, because (1 —nws+T—(1+r)e> 1 —1)w,+T
for any Hj from Assumption 3, A[1—7)ws+7]>% from Assumption 4 (i).

When Sy — S is very low, Hy=0 (= F) for Fy < (>)HS from the proof of Lemma 2 (ii)(b). In

this case, Hy does not decrease from Hs = F5 to Hy =0 because F5 non-decreases when Ho = F5
and, as shown in the proof, H2 is constant

From the proof, when 3>~ or Ny < 5 + , and SIVV—:S;; is not very, but relatively, low, Hy =0

(= Fy) for Fy < (>)HS® (Sn—S5). The shift from Hy=Fj to Hy=0 does not occur in this case as well,
because, as shown in the proof, when F5 > H§><>(§V—§§) holds in the initial period, the condition
continues to hold in subsequent periods. o

Finally, when 8 < ~, N; > %, and Sy — S92 is not very, but relatively, low, Hs = Fj

for Fp < max {O,Hgo(gjv—gg,mini{qés})} H, e <max {0 HY oSy — Sg,mln,{qQS})} ) for F €
(max {O, Hgo(éjvv—:g;, mini{qgs})}, min {H2 , H§><><SN—S2, maxi{qés})D ,

Hy =min {HS,HSO(STJJV—/S\;,maxi{qéS})} for I € {min {Hg,Hgo(g;V—/S\;,maXi{qgs})}, Hg), and
Hy=F, for Fp > Hg, implying that Hy € 0, F) for Fy € (max {O,Hgo(gjv—g,mini{qgs})}, Hg) )



In this case, Hs could decrease over time under the following two situations where p;g =0, pag =
1,poy = 0 holds. First, when ﬁwu <€ and Hs € 0, Fy), Fy decreases over time and thus
H>5 could decrease, because wealth hofdings of those who can afford, but do not take, education
and become unskilled workers decrease over time. Second, when mwu >¢ and thus Fj is

time-invariant, Hy decreases when Fy is slightly less than Hgo(éjv—g;,mini{qés}) or Hgo(gjv—

Sy, max;{qss}) and this critical Hy decreases.
[Proof that Hy increases over time when p;g=1] When p;s=1, Hy=F) from Lemma 2 (ii)(a).

Then, the result is obvious when mwu >‘e, thus the proof focuses on the case mwu <e.
When p;s=1, from (2) and (16), the disposable labor income of unskilled workers is expressed as
72\ — ﬁ—lws—ﬁ 1,8 1ws |

The derivative of this equation with respect to Hy equals

= s 4 s~ -t (15 T o]+ 2 (L ) 0 M- )
(- Ny >f+1{—(;§ [(1+;f+i>w—(w T S)}wsw‘w(l%%)}

= (=Nyws— )ii [W (wﬁ%%w) - (1+ ; ii)] (C16)

The second derivative is negative because w increases with Ho.
At Hy=0, (C15) equals

I—7nw,+ <T—%2>E:wu+

B—1 (1—Nyws—wy)? [ 16-1

Ny —=———(1—Ny)|. C17
1+~ Nyws+ (11— Nyw, ! 21+'y( 1)] (C17)

Thus, m[(l T)wy,+T)>¢ holds at Ho =0 from footnote 42 of Assumption 4 (i). Then,

because m[(l T)wy+T] = mwu <€ at Hy =1 and the second derivative of (C15) is

negative, there exists Hs € (0,1) such that m[(l—T)wujLT] > (<)e for Hy < (>)Ho.

From Assumption 4 (ii), a not-small proportion of group 2 individuals do not have wealth
initially. If the proportion of such individuals is greater than 1 — Hj, their descendants can accu-
mulate wealth greater than € and thus Ho jumps from a value less than Hs to 1 at some point in
time because m[(l T)w,+T) > € always holds for their lineages. If m[(l—?)wu—i—T]

at Hp = 0 is sufficiently greater than & (Assumption 4 (i)), H, is large enough that the initial
proportion of those without wealth is greater than 1 — Hs. This is the case if § or w; is sufficiently
large or + is sufficiently small because (1—7)w,+7 increases with § and ws and decreases with -,
as shown next.

The derivative of the disposable income (C15) with respect to ?T equals 2= times
16—-1ws—w\_ 18-1 6—1
_ i I ) = — Ry
wt (13 2 5 = v 1+7<s o)
-1
8—1
=z N1 = A= N —wn) 2 \N1 = 2 (L= N) s —100) > 0,

where the second last inequality is from Assumption 1.



The derivative of the disposable income with respect to ws equals B=L times

é [—wu—l—(l—lﬁ_l ws—ﬁ>w] Cws—wlp-1

& 2147w T 2149
sl e (AR 25712
S =t R = R )
_ %w—wu+[N1+(1—N1)H2](w%”“——)}+wsw_m%{—1+%[NlJr(lw_Nl)Hﬂ(werw)}
_ % [(1 — N (1~ Hy)w— (1 —Ny) (1 — H) (w%f] — f 3 =M _Qg Yt

=
|

0N H D B 10-N)( - H)
- (Rt g {0 i ==

(1—N1)(1—H2)(wu+m) ﬂ—l 1-N;
(@)2 (ws_wu)<N1—m 5 >>O,

>

where the last inequality is from Assumption 1. =

Proof of Proposition 4. Figures 4—7 would be helpful to understand the proof.

(i) The proof of Proposition 3 (i) applies for results on steady-state identity mostly, since
Hy=F, from Lemma 2 (ii)(a) and Lemma A4 (ii) is same as Lemma A2 (ii). However, unlike the
constant Hy case, p1g =1, pas = 1, poy = 0, which may be realized for low Hy when 3 >~ and
Ny > %Y (see Figure 3), shifts to pi1s =pag =pov = 1 eventually because Ha increases over time
from Lemma 3 (ii). The result on cultural variables is from Lemma A5 (i) and Proposition 3 (i).

(ii) As long as He = Fy, F is constant under peg =0 from 7 =0. When (Fg,gv) is located
below initial (mS) with p;s=0 and Fy> HY, Ha=F; from the proof of Lemma 2 (ii)(b) and thus
p1s =pas =pou =0 initially. p15=pag=per =0 holds in subsequent periods, because (mS) does not
shift from Lemma A4 (v) and HY is constant from (C13).

When 8>~ or N; < BQ—';}Y (Figures 4—6), if (Fg,g\]/v) is below initial (mS) with p;s =0 and
Iy <H§>, or if (Fy, 3’7\7) is on or above initial (mS) with p;g=0 and below initial (mU) with p;g=0
and I < Hgo(g']vv —:92) (where Hgo/(é\]/\] —:92) <0), Hy=0 and p1s=poy =0 initially from the proof
of Lemma 2 (ii)(b). Similarly, when 8 <+~ and N; > %7 (Figure 7), if Fy < HY and Sy — Sy is

smaller than the level satisfying Hgo(éjv—g;) =0 (where H§><>/(§]'v_§;) >0), Hy=0 and p1s=poy=0
initially from the proof. Hy=0 and pis=pey =0 hold in subsequent periods. This is because (mS)
and (mU) do not shift from Lemma A4 (vi), Hg is constant, H§><>(§[V—§;) does not change from
(C11) and the fact that g15=1, goy =0 continues to hold from (13), and F5 decreases over time.

Equilibria with other values of p1g, pag, and poyy do not shift to p1g=pag=poy =0 or Ho =0,
p1s = pav = 0, because (mS) with p;g = 0 in the initial period is located at a higher position
than or the same position as those in subsequent periods on the (Fb, 37\/) plane from Lemma A4
(i) and initial Hgo(gfv—:q;) is greater (smaller) than those in subsequent periods when >~ or
N < [3257 (when f <~ and Ny > 52—?}) from the proof of Lemma 2 (ii)(b).

¢g=1and ¢5g = ¢y =0 (¢5y =0 when Hy =0) is from Lemma A5 (iii) and the result
that only the society starting with p1g = pas =poy =0 (H2 =0 and p1g = poy =0) ends up with
Pis=Pss=Psy =0 (H3 =0 and pjg=p5;=0).
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Figure C4 Relationship between initial (Fb, S’TV) and steady-state identity for the full-fledged model
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Figure C5: Relationship between initial (F5, S’TV) and steady-state identity for the full-fledged model

with mwugé when 3>+ and ng%l
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Figure C7: Relationship between initial (F3, 5’\1/\/) and steady-state identity for the full-fledged model

with mwu<e when g <+ and Ny > 52_&
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(iii) As long as Hy = Fj, Fy is constant under pag =0 from 7=0. When p15=0, pas =poy =1
initially (i.e., (Fy, Sy) is on or above initial (mU) with p1g=0 and below initial (M) with p1g=0),
where Hy = F» from Lemma 2 (ii)(a), and Sy is relatively low for given Hy = Fy (i.e., (F3, ‘5?1/\7) is
below steady-state (M) with p1g=0), p1g =0, pas =por =1 holds in subsequent periods because
(M) and (mU) shift downward over time on the (Fy, Sy) plane from Lemma A4 (iii).

When 3>+~ or N < —2’3— (Figures 4—6), p1s =0, pos =1, poyy =0 initially (i.e., (Fb, S’]vv) is on
or above initial (mS) Wlth pls 0 and below initial (mU) with p;g=0; when 8>~ and N; > &5 25

[Figure 6], also below initial (M) with p;g=0; and F; is greater than initial H. <><>(5’ N —S5)), where
Hy=F, from the proof of Lemma 2 (ii)(b), and Sy is relatively high (i.e., (F2, Sy) is on or above
steady-state (mU) with p;g=0; when 3>~ and Nj > %7 [Figure 6], also below steady-state (M)
with p;5=0), the society shifts to p1g=0, pas =peyy =1 eventually and stays in this state. This is
because (M) shifts downward over time, so does (mU) in the long run, from Lemma A4 (iv), (mS)s
in subsequent periods are not located above initial (mS) from Lemma A4 (i), and F is greater
than initial HSO(S‘TV—/S\;) in subsequent periods as well from the proof of Lemma 2 (ii)(bh).

When <7, N; > ﬂz—ﬁ/ (Figure 7), p1s =0, pag =1, poy =0 initially and Sy is relatively high
(i.e., (Fy, Sy) is on or above initial (mS) and steady-state (mU) with p1g =0, below initial (mU)
with p;g =0), where Ho = F5 from the proof of Lemma 2 (ii)(b), the society shifts to p;s =0,
pas =pory =1 and stays in this state due to the reasons explained for the previous case. .

To summarize, when 3 >~ or Ny < ﬁﬁ (Figures 4—6), pig = 0,p5g = p5y =1 if (F2, Sp) is
located on or above initial (mS) with p15=0, as well as steady-state (mU) with p;5=0, and below

steady-state (M) with p;s =0, and F5 is greater than initial HgO(SN Sy); when <~ and Ny > B—J’%

(Figure 7), pig=0, pho=ps,; =1 if (F>, SN) is located on or above initial (mS) with p;5=0, as well
as steady-state (mU) With plS 0, and below steady-state (M) with p;5=0.

When 3>~ or N1 < (Flgures 4—6), p1s =0, pas =1, poy =0 initially, and §1,V is relatively
low (i.c., (Fy, Sn) is on or above initial (mS) with p1g =0, below steady-state (mU) with p;g=0;
when 3 >’y and Ny > 222 [Flgure 6], also below steady-state (M) with p;s=0; and F» is greater
than initial HSO(SN—SQ)), where Hy=F; from the proof of Lemma 2 (ii)(b), p1s =0, pas =1, poy =0
continues to hold due to the reasons explained for the case before the previous case.

When (<, N; > ﬂ2_ﬁy (Figure 7), p1s =0, pas =1, poyy = 0 initially, and Sy is relatively low
(i.e., (FQ,:ST]/\[) is on or above initial (mS) with p1g =0 for Fp > H§><> and 5’7\7 g; is greater than
the level such that initial Hy OGN — 5’2) 0 for F» < H. <><>, and (F, S Sy) is below steady-state (mU)
with p1g=0), where HQ—HOO(SN 5’2) if Fy <H<><> and SN 5’2 is smaller than the level satisfying
HgO(SN—SQ) = F5, otherwise, Hy = F5, from the proof of Lemma 2 (ii)(b), p15=0, pas =(0, 1], p2ry =0
subsequently. This is because the graph of HQOO@’V—SZ) in the initial period is located above those
in subsequent periods on the (Fy, Sy) plane from the proof of Lemma 2 (ii)(b), Lemma A4 (iv)
holds, and Fy decreases (is constant) when Ha < (=)F2. pag € (0, 1) is possible since Hgo(S N—5)
changes over time from the proof, but p5¢=1 due to ¢5¢=¢5;=1, as shown below.

To summarize, pig =0, pig=1,p5; =0 if (Fy, g]vv) is located above the region for piq =pig=
p5; =0 and the one for H3 =0 and pjg=p}; =0 and below steady-state (mU) with p;g=0, when
B>~ and Ny >S5 ﬂ+7 (Figure 6), also below steady-state (M) with p;g=0.

Aig =g = qQU =1 is from Lemma A5 (ii) and the result that only the society starting with
p1s =1 and never satisfying p;g=0 ends up with pj¢=0, p5¢=1,p5;=0 or 1.

(iv) The result can be proved similarly to Proposition 3 (iv). m
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Proof of Proposition 5. (i) (a) When 5‘7\; is very high so that pjg=pas=poy =1 in the initial
period (i.e., initial (Fy, Sy) is on or above initial (M) with pyg=1, when 3>~ and Ny > 52?, also
on or above initial (mU) with p;jg=1 on the (Fy, SN) plane), p1g = pas =poy =1 always because,
as noted in the proof of Proposition 4 (i), the proof of Proposition 3 (i) applies. When >~ and
Ny > ﬂ—gy and p1s=1, pas =1, poyy =0 initially (i.e., initial (F?, S’TV) is on or above initial (M) with
p1s =1 and below initial (mU) with p;g=1), the equilibrium shifts to p;s =pas =poy =1 eventually
from the proof of Proposition 4 (i). Hence, p1g=1 always holds, thus Hs increases over time and
H3 =1 from Lemma 3 (ii). (b) The result holds because initial (M) with p;s =1 is downward
sloping, and as Evl and w, are lower, it is located at a lower position on the (F, S'IVV) plane.

(ii)(a) When Sy is high enough that p1g =0, pag = pop =1 initially (i.e., initial (Fy, Sy) is on
or above initial (mU) with p;g=0 and below initial (M) with p;g=0) or p1s=0, pag=1,poy =0
initially (i.e., initial (Fy, 5’7\;) is on or above initial (mS) with p;s=0 and below initial (M) and (mU)
with p;5=0; occurs only when 3>~ and Ny > %Y) and Sy is relatively high (i.e., (Fy, 5’7\/) is on or
above steady-state (M) with pjg=1, when 3>~ and N; > %—?, also on or above steady-state (mU)
with p1g=1), the society shifts to p1s = pag =pay =1 eventually from the proof of Proposition 3
(i). Hj increases after the shift (when p1g=0, pas =1, pory =0 initially, the shift to pjg=1, pas=1,
pou =0 may occur ﬁrst thus, the increase may start earlier) and Hs =1 from Lemma 3 (ii).

When 8>, Ny > 8 2,3 52 p15=0, pas =1, poy =0 initially (i.e., initial (Fs, 37\/) is on or above initial
(mS) with p;g =0 and below initial (M) and (mU) with p;g =0), and Sy is relatively, but not
very, high (i.e., initial (F?, 5’7\]) is on or above steady-state (M) with p;g=1 and below steady-state
(mU) with p1g=1), the society shifts to p1g=1, pag=1, pary =0 first from the proof of Proposition
3 (i). Hj starts increasing after the shift and Hj =1 from Lemma 3 (ii). (Eventually, the shift to
p1s=pas =poy =1 occurs.) The last result can be proved similary to (i)(b). Unlike (i)(b), w, does
not have an effect since the last term of (M) disappears in the steady state from Proposition 4 (i).

(b) From the proof of Proposition 4 (ii) and (iii), when initial (F3, S’Tv) is located below steady-
state (M) with p;g =0, when 3>~ and N; > %7, also below steady-state (mU) with p;g =0,
p1s =0 and thus 7 =0 always. Hence, when Hy = F, € (0, 1) initially, Hs is time-invariant from
T )\(>‘1 Ty Wu < <e. When Hs =0 initially, F5 decreases over time. Since Ho =0 holds in subsequent
periods from the proof of Proposition 4 (ii), Hy = Ff =0. When Hj € (0, F») initially, which can
occur when 3 <~, N;> ﬁ2—-€7 and initial F» is in the intermediate range from Lemma 2 (ii)(b), F»

decreases from wy <€. After Fy becomes low enough, Ho = F» holds and the decrease of Fy

A
1-A\(1+4r) R
stops from the proof of Lemma 2 (ii)(b). Hence, H3 =F3 € (0, 1). Because H $9(Sn—S5) changes over
time, if H. <><>(S N— Sg) decreases fast enough and F5 decreases slow enough, Hs increases, otherwise,

Hy decreases. The last result holds because steady-state (M) and (mU) (when 8>~ and N; > 2 J“W)

are downward sloping, and as Sy [92] is higher, steady-state (M) [(mU)] is located at a higher
position on the (F3, 5‘7\;) plane. m

Proof of Proposition 6. Figures 4—7 in the proof of Proposition 4 may be helpful to understand
the proof. (i) Since F; increases even under pog =0, and Hy=F} from Lemma 2 (ii)(a), pjg=p5¢=
Py =1 when Sy is greater than the level at which steady-state (M) with p;g =1 intersects with
Hy=1, i.e., when 5‘7\;2:5': The result on the cultural variable is from Lemma A5 (i).

(ii) When (F3, 3’7\7) is below initial (mS) with pjg =0 and F; > Hg in the initial period, i.e.,
p1s = p2s = pey = 0 initially, Hy = F5 from the proof of Lemma 2 (ii)(b). Then, the proof of
Proposition 3 (ii) applies, because Lemma A4 (v) is same as Lemma A2 (v) and (mS) is upward-
sloping on the (Fy, 5’\1/\7) plane.
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Unlike the constant Hs case, when p1g=0, pas =1, poy =0 or 1 initially or when H2=0,p15=
poyy =0 initially, and Sy is low, the shift to p1g=pag =P = 0 and pjg=p5¢=p5; =0 can occur
since Fy increases over time. Such a shift is pos&ble when Sy N is strictly smaller than the level at
which initial (mS) intersects with Hy=1, Sg+ s[ox (1—X)+Bwg](N1)2. When Sn < Sa, the shift to

P15 =pas =por =0 occurs for certain because the level of 5‘7\/ on steady-state (mS) with p;jg=0 at
Hy=1 is weakly greater than :S’;, the corresponding level of SA’]/V when ¢ ¢=0q5¢=0q5;;-

The result on the cultural variable is from Lemma A5 (iii). Unlike the constant Hs case, p1s=0,
pas =1, poy=0 or 1 can converge to p]g=p5¢=ps; =0, thus qQS @5y can be greater than 0.

(iii) When Sy > S+ [ <[px (1—X)+Bwg](N1)? and Sy < S, the proofs of (i) and (i) do not
apply. pig=0, p5g=p5; = 1 holds, because F5 increases over time and thus the society starting
with p1g =0, pas =1,poy =0 or Ha =0, p15=poy =0 transits to p1g =0, pas =poy =1 eventually
(Figure 6). When Sy > S2 and Sy < 5’2—1—% [ox 1 —X)+Bwq] (N1)? and either Hy =0, p1g =poy =0
or p1s=0, pas=1, poy =0 or 1 initially, pj¢=0, p5s=p3; =1 holds if initial (Fy, g]/v) is located far
above initial (mS) with p;g=0 or an increase in Hy is slow compared to the (long-term) downward
shift of (mS) with p1g=0. Otherwise, as shown in the proof of (ii), pj g=psg=p5;=0.

The result on the cultural variable is from Lemma A5 (ii). ¢jg = ¢3¢ = ¢35y = 1 because the
states with p1g=1 do not transit to p1g=0, pas=poy=1.

(iv) The result can be proved similarly to Proposition 3 (iv). m

Proof of Proposition 7. (i) When initial (F5, S’TV) is located on or above initial (M) with p;g=1
on the (Fy, STV) plane, p;g =1 and 7> 0 initially from the proof of Proposition 3 (i). pis=1 and
7 >0 continue to hold from Lemma A4 (ii). Hence, the speed of convergence to H2 =1 is highest.
(i) (a) When initial (Fy, Sy) is located below initial (M) with pis =0 and Sy > Sy, p1g =0 and
7=0 initially from the proof of Proposition 3 (i). p1s=1 and 7>0 (thus the convergence to H; =1
accelerates) eventually from the proof of Proposition 6 (i). Given Fj, as S”\z/v is higher, p1g=1 is
realized earlier and thus convergence to Hj =1 occurs faster. This is because (M) shifts downward
over time or does not shift (when Hy =0, p1s = poy =0) from Lemma A4 (iii)—(vi). (b) When
Sy <S1, prg =0 and thus 7=0 always from the proof of Proposition 6 (ii) and (iii). (iii) The result
holds because as S; and wq are lower, (M) is located at a lower position on the (Fb, S;z/v) plane and
thus 7>0 is more likely to hold. m

Proof of Lemma A1l. From (M), (mU), and (mS), the statement of the lemma holds iff (1—7)(1—
Hyj) decreases with Hy when p;g=1. From (16), (1-7)(1-H2) = ﬁ [5—1—'}/— M] (1-Hs), thus its

derivative with respect to Ha equals ﬁ times — [ﬂ—i—’y (B 1) } +(1—H> )(’8 DCH (1=N1) (ws—wy,) =

(@)
_ [ﬁ—l—'y—(ﬁ—l)(%)ﬂ. Hence,

d[1—7)(1—Hy)] 1+7 ws)2

From Assumption 1, the above condition holds if 3 > (%)2— 1 & 2= <2, which is always true

because 2= < W < 2 from Ny > % [ |

Proof of Lemma A2. Because qgo =qyc (C = S,U) holds in any period under the initial
condition qéc = 0 in the model with constant Hsy, the notation gsc, not qgc, is used. In the
following proofs, gas > Gy > gou is used, which is from Proposition 1 (i), (13), and (14).

(i) The last term of the RHS of (mS) in the initial period equals %[px (L =) +Buwq] (IN7)?
from ¢q15 = 1 and g25 = gy = 0. In subsequent periods, @—qy)[(@s—q25)+@—q25)] < (N1)?, be-
cause when (@y—@2s) + (G@—q25) > 0 (the result is straightforward when (@,—g2s) + G@—q25) < 0),
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(T@—T2)[@2—29) +@—29)] < N1(1 =G [N1 (1~ o) —2(q25 — )] < (N1)* from ; < 1 and thus § < N1+
(1—N1)Gy. The last term of the RHS of (M) in the initial period equals 7—15[,0)( (1—X)+ Bwg] (1—Ny)2.
The expression in subsequent periods is smaller because §; —q = (1—N1)(q; — 7o) <1 — Ny.

(i) When p1s=pas =par =1, (3)' =T,+x(T~T) from (14) and thus (g)’ = M [, +x(7—7,)]+
(1—=N1)[q+x(G—G5)] =7. Hence, (7)'—(q;)'=(1—x) (¢—g;) and thus (M) shifts downward over
time. (72)'+(9)'—2(@20)' =T +a+x(T—72)—2[xT+ (1 —x)q2¢] = (1= X) (@2+7—2¢2¢) (C = S,U). Since
Go+g—2qou >0 from gos > qorr, (mU) shifts downward, while (mS) shifts downward (upward) when
To+G—2q25 > (<)0. As long as p1g=pas=poy =1 holds, the cultural distance between individuals
becomes 0 in the long run from Lemma A3 (i), thus (mS) shifts downward in the long run.

(iii) [When p15=0, pas=pov=1] (1)’ =7, from (13) and () =G+ x(G—qs) from (14). Thus,
(@' = Ny +(1- M) [y + X (T—T2)) =T+ (1~ N1 )X (G—T). Hence, (@) —(@) =, — G—(1—N1)x(7—7,)
and thus (M) shifts downward. (mU) shifts downward because (7)'—(G2) =7+ (1—N1)x(T—72) —
[@2+x(7—72)]=(1—XxN1)(@—72) and

@)+ @) —2@0) = TG+x(@—7)+7+(1-N)x(@—T2) —2[x7+(1-X)q2v]
= Gtq—2qu+x[2-MN)(@—72)-2(7—qv)]
= T+t7— 200 —X[N1(T—T2) +2(T2— ¢2v)] T+ T —2q20-

The result that (m.S) shifts downward in the long run can be proved similarly to (i).

[When p1g =1, p2s =1, pov = 0] (@1)' = x7+ 1 =X, from (14), (3)" = H2[xq+ (1 —X)qas] +
(1= F9)[x@y-+ (1 — 0] = X Hag-+ (1~ F9) @, from (14) and (13), thus (3)' =N [x@-+(0—)g,]+ 1 —
Ny) [xH2q+ (1 —xHa) Gy] . Hence,

@) =@" = (=N {XT+A=07] - XHoq+ (1~ xH2)T.]}
= O—q—[1-(1=X01-N)] @ -9+ 1 - Ni) 1 —xHo) G-
{1=XA—-N)+{10—xH2) N1} @, -9
{l—x[1-N1(1-H9]}@,—9 <7, -7

Thus, (M) shifts downward over time.

@' @) = N{[XG+0—T] - [\H2g+ 1~ xH)T]}
= -G~ (1-—Ni+xN1H)@—T) +N1(1—x) @, —9
= Qo [1-N1 (1-Ha) xN1(G1—T) -
@' +(@) —22v) = NMT+1-XT]+C— Ny [xH2g+ (1 —XH2) o] —2[XTo+ (1 — N q20]
= @+9—200)+N1(1-X@ —9 —1—-N)@—T) +C— N )XH2G—q2) —2X G2 — q2v)
= @+72—2qu)+H{l—1—N)—[1—N)— C— NixHa|} N1@, — ) —2X (@2 — q20)
= @+%—2q00) —x{{1—N)—Q—N)H2]N1@, —T2) +2@>—q20)} -

From these equations,
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(@' = (@)@ +@2) —2(20)’]

4-T)@ ) -7 {[(1_N1)_(Q_Nl)H2]NjL<_@1—§2)+2(?2—q2(])}
=@—92)q@+7>—2q20) —xNV1(G1 —7 Ty —2g0
q—7)@+72—2¢20) —XN1(G1 =7 +[1—N1(1—H2)]<_X{[( _Nl)_(Q—J(\]fl)qug]Nf@Z—q?)Jrz@Q_qQU)}>

e L R L R
{L=x[1-N1(1—H[H{ L —N1) (L - HYN1(@, —G2) +2@>—q20) }
=@~ T)@+T2—2q20) —XN1 (@1 —G2) —{1—x[1-N1(1-Ho)[}H2N1(G1 —T2)
+[1- N1(1 Ho)|[N1@1—T2) +2@2—q2v)]
{I=x[1=N1(1 - H)H{L~ N) (L = H)N1@1 —T2) +2(@>—q20) }
=@~ T)@+T2—2q20) —XxN1@1 —T2) {1 =N1)(1 = H) +xHa[1—N1(1— Ho) [} N1(@1 — 7o)
+[1—N1(l - H2)|2@> — q2v)

Thus, (mU) shifts downward over time.

The result on (mS) can be proved similarly to the result when p15=0 and pag=poy =1.

(iv) Because (g;)' =7, from (13) and (qy) = xHaq+ (1—xHa2) G from the proof of (iii) when
pis=1, pas=1, por =0, (7)' =q+x(1—N1)H2q—q). Hence, (7,)'—(7)' =7, —7—x1—N)H2q—7»)
and thus (M) shifts downward. The result on (mU) and (mS) can be proved similarly to the one
on (mS) of (iii).

(v) When p1g=pas =pov =0, (¢;)'=7; (J=1,2) and (7) =7 from (13). Hence, (§)—<7;)' =77
and thus (M) does not shift over time. From (13) and ga25 > qor,

@)+ (@) —2@0) = To+7—290—2X@2—92v) <To+T—2q2v,

@)+ (@) —2(@28) = To+T—2¢25+2x(G25 —T) > T2 +T— 2425,
where the first (second) inequality holds with ”<” (”?>”) unless g25 = goy. Thus, the results on
(mU) and (mS) hold. m
Proof of Lemma A3. (i) When pig=pis=p5;=1, ¢{s =@ =@y =7" from (14). g =7"
because (§)'=¢ when p;s=pos=poy=1 from (14).

(ii) When pig=p5s=1 and p}; =0, ¢i¢ =g =y =¢; =75 from (13) and (14). From (14),
when p1g=pas=1, pory =0,

(@) =x N7 + (1= N1)go] + (1 =17,
=[xN1+{1=X]q +x {1 —N1)gy, (C19)

and from (14) and (13),

(@) = Ha[XG+ (1 —X) Qo]+ (1 — Ho) [xTo+ (1 = X)Tar/]
= xH2[N1G; +(1—N1)Go] + (1 — H2) Gy
=xHaN1q; + (1 —xH2N1) G (C20)

These equations can be expressed as

(@)=6 o)) .

where a = xN1+(1—x) and b = yH2N; in this proof, in which a > b.
Thus, 3 n /it
qi) = lim (a 1‘“) a1 (C22)
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= lim
n—oo

where

1_an 2
JE&( 1—b> 15&( )

; (
<a2+(1—a)b (1+a— b1 a))

)
(

= a—hb (—h2+(1—a)b Z Z) ]
i a+[1+@—b+al(l—a)b [1—1— a>
ol 1e-+a-b7p 0-yP+] 1+<a b) ’
a4+{1+(a—b)+(a—b)2+[1+(a—b)+a]a}(1—a)b [1 a—B+a—b>+@a— ]1—a
[1+(a—b)+(a—b)2+(a—b)3]b (1—b)4+{1+(a—b)+(a—b) +[1+(a—b) (1 b)](l—b)}(l—a)b
a 1—a\"~
X(b 1- b)
(Y b Yt b
i (S S ) O
1 b 1—a
_l—a—i—b <b 1—a>’ (C23)

Hence, ¢is =035 =G0 = T mm [H2N1q1 (1 —Nl)ﬁg]-

(iii) When at least one of piq and p};; equals 1, ¢5~ =7* must hold for C such that pj, =1
from (14) and ¢}, =75 must hold for C’ such that pj., =0 from (13). Thus, ¢5-= ¢ =75 =7;,
which equals qi‘szqg from (iv). (iv) When pj¢=0, ¢f¢=7} from (13). g} qu?l because (7;) =q;
when p15=0 from (13). The result for ¢3¢ and ¢3;; can be proved similarly. m
Proof of Lemma A4. As in the proof of Lemma A2, the fact qgs >qy > qu is used in the
proof. (i) The proof of Lemma A2 applies. (ii) When p1s=pas=paory =1, since Hy increases over
time (Lemma 3 (ii)),

(@) = HY)(@s) +[1-HD'] (T2)

= Ha[xq+(1—Xs]+ [(H)' — Ha] [xq+ (1 —X) E(g5py|C"=5) |+ [1—(H)'] [xg+ 1 —X) E(¢by |C" =

= Ha[xXG+ {1~ X)qas]+ 1~ H)[XT+ (1 —X)T20/]
= Xq+1—XGs-

The above equation is the same as in the model with constant Hs, hence the result can be proved
as in Lemma A2 (ii). Unlike the model with constant Hy, qé g is heterogenous among lineages with
different periods of becoming skilled, so (mS) differs for those with different g4¢. The same result as
in the previous model holds for each of the (mS)s. (As will be clear from the proof of Proposition 4,
¢4 is homogenous due to the initial condition ¢b;; =0 and the fact that only children of unskilled
workers are unskilled.)

(iii) When p1g =pes =1, poy =0, Hs increases over time from Lemma 3 (ii) and when p1g =
0,p25 = pov = 1, Hy non-decreases over time from Lemma 2 (ii)(a) and Lemma 3 (ii). Thus, as
in the above proof for (ii), it can be shown that the result is same as in the model with constant
H,. (Asin (ii), ¢ is homogenous, which will be clear from the proof of Proposition 4, while ¢}
becomes heterogenous when Hs increases over time.)

(iv) In the initial period, when p1g=0, pos =1, poy =0 is realized in adulthood if Hy = F5 in
childhood (i.c., (Fh, Sy) is on or above initial (mS) with p1g =0 and below initial (M) and (mU)
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with p;g=0), from the proof of Lemma A2 (11) the realized Hs is positive and thus paog=1, poy=0

is true under the following cases: If Sn N— Sg is sufficiently large, H2 Fy; otherwise, when 3>«
or N1 < ﬁ+w Hy =F for Fy > HOO(SN 5’2)' when 6 <, Ny > ﬁ+ , and SN 5’2 is not small,

Hy=F; for Fy <H§><>(SN SQ) and Hg—Hgo(SN 52) for Iy 2H§><>(SN Sg). In subsequent periods,
qgs becomes heterogenous and pags € (0,1), pery = 0 may hold either when Hy = F5 increases or
when <~ , N1 > ﬂg—f,y, and Hgo(SA’]/V—fS;) changes over time. Taking into account the possibility of
becoming pags € (0, 1),

(@) = Hapas[xT+(1—X)Tas]+Ha(l —p2s) [XTo + (1 = X)Tos]+ (1 — Ho) [xT2 + (1 = X)T0/]
= Qo tX[H2p2s@—Tas) +Ha(l —p2s) @ —Tos) + (1 — H2) @2 —Tap)]
= Qo+t XH2p2s[@—Tos+ (1 —H2) @25 —To0)]
= Qo+ xH2p2s5q—T2) -

Thus, (7)' =g+ x(1—N1)Hapas@@—7y). Hence, (q;)'— () =7, —7—x(1—N1) Hapas(@—7,) and thus (M)
shifts downward. The result on (mU) and (mS) can be proved similarly to the model with constant
Hj. (As shown in the proof of Lemma 2 (ii)(b), when g <+, N; > ﬁ—%%, and Hs € (0, F3), Hy may
decline, in which case qéU too becomes heterogenous and (mU) differs for those with different qéU,
but poy =0 is always true.)

(v) When pjg =pas =poy =0 is realized in adulthood if Hy = F» in childhood (i.e., (F3, S'JVV) is
below initial (mS) with pyg=0), Ho=F} is true for F» > HY from the proof of Lemma 2 (ii)(b).
The result can be proved as in Lemma A2 (v). (As in (i), g4 is homogenous, while g4g becomes
heterogenous when Hj increases over time.)

(vi) When plg pgs poy =0 holds with Hy=F5, Ho=0 and p1s=pau = 0 are true for Fs <H2
if >~ or N1 < 5 +7 otherwise, they are true for Fs < H2 when Sy N— 5’2 is small from the proof
of Lemma 2 (ii)(b). When P15 =0, pas =1, pov =0 holds with Ho =Fy, Hy=0 and p1s=poy =0
are realized for I < Hgo(S N— Sg) when 3>v or N1 < <5 from the proof of the lemma. As shown

in the proof, shifts from other states to Ho =0 and pls ng =0 do not occur. Hence, q1 =1 and
¢ =0 for any 7 hold for any period, thus (M), (mU), and (mS) do not shift. m

Proof of Lemma A5. Proofs are provided only for results different from Lemma A3. (i) When
T W S € Pis = Phg =pby =1 when pis = pas =pov =1 or pis = pas = 1, poy = 0 initially,
and plg = p5g = p5y = 1 may hold when p15=0,pag = 1,poy =0 or 1 initially from the proof of
Proposition 4 (i). When p1g = pas = poy =1 initially, p1g = pas = pey = 1 always from the proof.
Hence, ()’ =7, thus, under the initial condition 15 =1,g25 =qov =0, ¢js =g =@y =T =N
holds. In other cases, after the society shifts to p1g =pos =pov =1, (@) = N1[xq+1—x)q. |+ 10—
N)(T+ (L~ {HoTas+ (1~ Ho)op }) =T Thus, ¢js =35 =05y =T =7" €(0,1).

When %wu >€, Pig =Dig —ng =1 when Sy > S; from Proposition 6 (i). Thus, from
Figures 4—7, unless 3 > v and Ny > 52 2ﬁ , p2s = poy = 1 always. When 3 >~ and Ny > 521 2,3 ,

p1s = 0 or 1,pas = 1,poy = 0 may converge to pjg = p5g = Doy = 1 from Figure 6. As with

the case mwu <€, if p1g = pas = por = 1 initially, ¢f¢ = ¢3¢ = @5y = ¢° = N1, otherwise,

Gs=Gs=a%By=7=7" €(0,1).
(iii) When p;C:O (C:S, U)7 q;C:§§ from (13). 63 qu because (62),262 from the pI“OOf of
Lemma A4 (v). m
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