
Appendix C Proofs of Lemmas and Propositions

Proof of Proposition 1. (i) The statement is true iff the RHS of (mU) is greater than that of

(mS). From these equations (multiplied by γδ),

γδfS2+(β−γ)N1(1−H2)(1−τ)(ws−wu)+[ρχ(1−χ)+βωq](q−q2)£¡q2−qi2U¢+¡q−qi2U¢¤
> γδfS2−(β+γ)N1(1−H2)(1−τ)(ws−wu)+[ρχ(1−χ)+βωq](q−q2)£− ¡qi2S−q2¢+¡q−qi2S¢¤
⇔ 2βN1(1−H2)(1−τ)(ws−wu)+[ρχ(1−χ)+βωq](q−q2)2

¡
qi2S−qi2U

¢
>0. (C1)

Given the initial condition qi2S= q
i
2U =0, (C1) is true for the initial period and thus q

i
2S≥ qi2U

for the second period from (13), (14), and the initial condition qi1S =1. Then, (C1) holds for the

second period and qi2S ≥ qi2U for the third period. Continuing in this way, one can prove (C1) for
all periods.

(ii) (a) The statement is true iff the RHS of (M) is greater than that of (mS). From these

equations (multiplied by γδ),

γδfS1+(β+γ)(1−N1)(1−H2)(1−τ)(ws−wu)+[ρχ(1−χ)+βωq](q1−q)2
>γδfS2−(β+γ)N1(1−H2)(1−τ)(ws−wu)+[ρχ(1−χ)+βωq](q−q2)£−¡qi2S−q2¢+¡q−qi2S¢¤

⇔ γδ
³fS1−fS2́ +(β+γ)(1−H2)(1−τ)(ws−wu)>− [ρχ(1−χ)+βωq]h(q1−q)2−(q−q2)£− ¡qi2S−q2¢+¡q−qi2S¢¤i ,

(C2)

The RHS of (C2) equals [ρχ(1−χ)+βωq] times
− (q1−q2)

©
(1−N1)2 (q1−q2)−N1

£−2¡qi2S−q2¢+N1(q1−q2)¤ª
= (q1−q2)

£
(2N1−1)(q1−q2)−2N1

¡
qi2S−q2

¢¤≤2N1−1<(N1)2, (C3)

where qi2S≥ q2 is used to prove the second last inequality. Hence, (C2) is true under Assumption
2.

(b) The majority are less likely to have a national identity than the minority’s unskilled iff the

RHS of (M) is greater than that of (mU). From these equations,

γδfS1+(β+γ)(1−N1)(1−H2)(1−τ)(ws−wu)+[ρχ(1−χ)+βωq](q1−q)2
>γδfS2+(β−γ)N1(1−H2)(1−τ)(ws−wu)+[ρχ(1−χ)+βωq](q−q2)£¡q2−qi2U¢+¡q−qi2U¢¤

⇔γδ
³fS1−fS2́ +[γ−β(2N1−1)](1−H2)(1−τ)(ws−wu)>− [ρχ(1−χ)+βωq]n(q1−q)2−(q−q2)£¡q2−qi2U¢+¡q−qi2U¢¤o,

(C4)

where the RHS equals [ρχ(1−χ)+βωq] times
(q1−q2)

£
(2N1−1)(q1−q2)+2N1

¡
q2−qi2U

¢¤
≤ (1−q2)[(2N1−1)(1−q2)+2N1q2]=(1−q2)[(2N1−1)+q2]≤(N1)2, (C5)

where the last inequality holds because the derivative of the second last expression with respect to

q2 equals −[(2N1−1)+q2]+(1−q2) and thus the expression is highest at q2 = 1−N1.
Hence, when γ−β(2N1−1) ≥ 0⇔ N1≤ β+γ

2β
, (C4) is true under Assumption 2. When N1>

β+γ
2β
,

(C4) holds for large H2, but it may not hold for small H2.

Proof of Proposition 3.

To prove the results, we use Figures 1−3 that show the positions of (M) and (mU) (with p1S=0
and with p1S=1) in the initial period and in the steady state, and of (mS) in the initial period on
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Figure C1: Relationship between initial (H2, fSN) and steady-state identity when β≤ γ and H2 is

constant

Figure C2: Relationship between initial (H2, fSN) and steady-state identity when β>γ, N1≤ β+γ
2β
,

and H2 is constant
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Figure C3: Relationship between initial (H2, fSN) and steady-state identity when β>γ, N1>
β+γ
2β
,

and H2 is constant

the (H2, fSN) plane. The steady-state dividing lines are for when p∗1S=p∗2S=p∗2U =0 does not hold,
in which case q∗1S=q

∗
2S=q

∗
2U from Lemma A3.

Relative positions of the dividing lines for given period and p1S are based on the following

theoretical results. (mU) is located above (mS) from Proposition 1 (i), and unless β > γ and

N1>
β+γ
2β
, (M) is above (mU) from (ii)(b) of the proposition. When β> γ and N1>

β+γ
2β

, (mU)

may be above (M) for small H2 from Proposition 1 (ii)(b), and Figure 3 illustrates such a case.

(M) and (mU) with p1S = 0 are located above (M) and (mU) with p1S = 1 respectively, because

τ > (=)0 when p1S =1(= 0). The dividing lines in the steady state are below the corresponding

ones in the initial period from Lemma A2 (ii)−(iv). At H2 = 1, the vertical level of initial (M)
on the (H2, fSN) plane equals fS1+ 1

γδ
[ρχ (1−χ)+βωq](1−N1)2 , that of initial (mU) and (mS) equalsfS2+ 1

γδ
[ρχ(1−χ)+βωq](N1)2 , while the vertical level of steady-state (M) isfS1 and that of steady-state

(mU) and (mS) is fS2. Relative levels of these values are from Assumption 2.

(i) Given H2, when fSN is very high so that p1S=p2S=p2U=1 in the initial period (i.e., (H2, fSN)
is on or above initial (M) with p1S=1 and when β>γ and N1>

β+γ
2β

[Figure 3], also on or above

initial (mU) with p1S =1 on the (H2, fSN) plane), p1S = p2S = p2U =1 holds in subsequent periods
because (M) and (mU) shift downward over time on the (H2, fSN) plane from Lemma A2 (ii).

When p1S=0, p2S=p2U=1 initially (i.e., (H2, fSN) is on or above initial (mU) with p1S=0 and
below initial (M) with p1S=0) and fSN is relatively high for given H2 (i.e., (H2, fSN) is on or above
steady-state (M) with p1S=1), society shifts to p1S=p2S=p2U=1 eventually (i.e., (H2, fSN) is on or
above (M) with p1S=1, when β>γ and N1>

β+γ
2β

[Figure 3], also on or above (mU) with p1S=1)

and stays in this state, because (M) and (mU) shift downward over time from Lemma A2 (iii).
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When p1S=0, p2S=1, p2U=0 initially (i.e., (H2, fSN) is on or above initial (mS) with p1S=0 and
below initial (M) and (mU) with p1S =0) and fSN is relatively high (i.e., (H2, fSN) is on or above
steady-state (M) and (mU) with p1S =1), occuring only when β> γ and N1>

β+γ
2β
, society shifts

to p1S=p2S=p2U =1 eventually (typically, after shifting to p1S=0, p2S=p2U =1) since (M) shifts

downward over time and (mU) and (mS) shift downward in the long term from Lemma A2 (iv).

When p1S=1, p2S=1, p2U =0 initially (i.e., (H2, fSN) is on or above initial (M) with p1S=1 and
below initial (mU) with p1S=1), which may occur only when β>γ and N1>

β+γ
2β

(Figure 3), andfSN is relatively high (i.e., (H2, fSN) is on or above steady-state (mU) with p1S =1), society shifts
to p1S=p2S=p2U=1 because (M) and (mU) shift downward over time from Lemma A2 (iii).

To summarize, p∗1S=p
∗
2S=p

∗
2U =1 when (H2,

fSN) is located on or above steady-state (M) with
p1S=1, and when β>γ and N1>

β+γ
2β

(Figure 3), also on or above steady-state (mU) with p1S=1.

When p1S = 1, p2S = 1, p2U = 0 initially (i.e., (H2, fSN) is on or above initial (M) with p1S = 1
and below initial (mU) with p1S=1), occuring only when β>γ and N1>

β+γ
2β

(Figure 3), and fSN
is not very high (i.e., (H2, fSN) is below steady-state (mU) with p1S =1), society stays in p1S =1,
p2S=1, p2U=0 because (M) and (mU) shift downward over time from Lemma A2 (iii).

When β>γ, N1>
β+γ
2β

(Figure 3), p1S=0, p2S=1, p2U=0 initially (i.e., (H2, fSN) is on or above
initial (mS) with p1S=0 and below initial (M) and (mU) with p1S=0), and fSN is relatively, but

not very, high (i.e., (H2, fSN) is on or above steady-state (M) with p1S =1 and below steady-state
(mU) with p1S=1), society shifts to p1S=1, p2S=1, p2U=0 because (M) and (mU) shift downward

in the long term from Lemma A2 (iv).

To summarize, p∗1S=1, p
∗
2S=1, p

∗
2U=0 when β>γ, N1>

β+γ
2β

(Figure 3), and (H2, fSN) is located
on or above steady-state (M) with p1S=1 and below steady-state (mU) with p1S=1.

The result on the steady-state cultural composition is from Lemma A3 (i) and (ii). The negative

relation between fSN and q# or q† holds because, as fSN is lower, the period during which cultural
assimilation proceeds, i.e., p1S=0, p2S=1, p2U =0 or 1, is longer. The proportion of the minority

element in the integrated culture is highest when p1S=p2S=p2U=1 always.

(ii) Given H2, when fSN is low enough that p1S=p2S=p2U =0 initially (i.e., (H2, fSN) is below
initial (mS) with p1S =0), p1S = p2S = p2U =0 holds in subsequent periods, because q2S = q2U =0

continues to hold and thus (mS) does not shift from Lemma A2 (v) and (13).

Society does not shift to p1S=p2S=p2U =0 from other combinations of p1S,p2S , and p2U because

(mS) with p1S =0 in the initial period is at a higher position than or the same position as those

in subsequent periods on the (H2, fSN) plane from Lemma A2 (i). q∗1S=1 and q
∗
2S=q

∗
2U =0 is from

Lemma A3 (iv) and the result that p1S=p2S=p2U=0 always holds.

(iii) When p1S=0, p2S=p2U=1 initially (i.e., (H2, fSN) is on or above initial (mU) with p1S=0
and below initial (M) with p1S =0) and fSN is relatively low for given H2 (i.e., (H2, fSN) is below
steady-state (M) with p1S=0), p1S=0, p2S=p2U=1 holds in subsequent periods because (M) and

(mU) shift downward over time on the (H2, fSN) plane from Lemma A2 (iii).

When p1S =0, p2S =1, p2U =0 initially (i.e., (H2, fSN) is on or above initial (mS) with p1S =0
and below initial (mU) with p1S =0; when β> γ and N1>

β+γ
2β

[Figure 3], also below initial (M)

with p1S=0) and fSN is relatively high (i.e., (H2, fSN) is on or above steady-state (mU) with p1S=0;
when β > γ and N1 >

β+γ
2β
, also below steady-state (M) with p1S = 0), society shifts to p1S = 0,

p2S = p2U =1 eventually and stays in this state, because (M) shifts downward over time, so does

(mU) in the long run, from Lemma A2 (iv), and (mS)s in subsequent periods are not located above

the one in the initial period from Lemma A2 (i).

When p1S=0, p2S=1, p2U =0 initially and fSN is relatively low (i.e., (H2, fSN) is below steady-
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state (mU) with p1S = 0; when β > γ and N1 >
β+γ
2β
, also below steady-state (M) with p1S = 0),

society stays in this state for the same reasons as the previous case.

To summarize, p∗1S = 0, p
∗
2S = p

∗
2U = 1 when (H2,

fSN) is on or above initial (mS) with p1S = 0,
as well as steady-state (mU) with p1S = 0, and below steady-state (M) with p1S = 0; p

∗
1S = 0,

p∗2S=1, p
∗
2U=0 when (H2,

fSN) is on or above initial (mS) with p1S=0 and below steady-state (mU)
with p1S=0, when β>γ and N1>

β+γ
2β

(Figure 3), also below steady-state (M) with p1S=0.

q∗1S = q
∗
2S = q

∗
2U =1 is from Lemma A3 (iii) and the result that only the society starting with

p1S=0 and never satisfying p1S=1 ends up with p
∗
1S=0, p

∗
2S=1, p

∗
2U =0 or 1.

(iv) The result on fS1 (fS2) holds because as fS1 is lower (fS2 is higher), (M) [(mS)] is located at a
lower (higher) position on the (H2, fSN) plane. The result on ωq holds because as ωq is higher, (mS)
in the initial period, whose last term equals [ρχ(1−χ)+βωq] (N1)2, is located at a higher position.
The level of ωq does not affect the likelihood of universal national identity because steady-state

(M) does not depend on ωq when q
∗
1S=q

∗
2S=q

∗
2U . The result on H2 is from the figures. The result

on q# or q† can be proved similarly to the corresponding result in (i).

Proof of Lemma 2. (i) The claim is proved if the difference in utility between when a group

1 individual takes education and when she does not is positive at H1=1. To compute the utility

when not taking education, the value of p1U needs to be specified. It is reasonable to suppose

p1U ≥ p1S since for a group 1 individual with cultural variable qi1, from (9), (10), (13), and (14),

p1U =1(=0)⇔ ui1UN≥(<)ui1U1
⇔γδfSN≥(<)γδfS1−(β−γ)(1−τ)(w1−w)+[ρχ(1−χ)+βωq](q1−q)¡2qi1−q1−q¢ (C6)

and thus the RHS of the equation is smaller than that of (M). Hence, the cases to be examined

are p1S=p1U=1, p1S=p1U=0, and p1S=0, p1U=1.

When p1S=p1U =1, for a group 1 individual with q
i
1, from (7), (9), (14), and the fact viJCG=

uiJCG+(1+r)a, the difference in utility between when taking education and not at H1=1 equals

(note τ= β−1
1+γ

ws−w
w
)

vi1SN−vi1UN=(1−τ){(ws−wu)−β[(ws−w)−(w−wu)]}−(1+r)e
=(1−τ)(ws−wu)(1−β{(1−N1)(1−H2)−[N1+(1−N1)H2]})−(1+r)e

=(1−τ)(ws−wu){1+β [(2N1−1)+2(1−N1)H2]}−(1+r)e > 0 under Assumption 3. (C7)

When p1S= p1U =0, from (8), (10), (13), τ =0, and w1=ws, the difference in utility between

when taking education and when not at H1=1 equals

vi1S1−vi1U1 = (ws−wu)−β[(ws−w1)− (w1−wu)]−(1+r)e
= (1+β)(ws−wu)−(1+r)e>0 under Assumption 3. (C8)

When p1S=0, p1U=1, from (8), (9), (13), (14), and τ=0, the difference in utility equals

vi1S1−vi1UN=(ws−wu)−β[(ws−w1)−(w−wu)]+γ
h
−δ
³fSN−fS1́ +(w1−w)i

−[ρχ(1−χ)+βωq]
h¡
qi1−q1

¢2−¡qi1−q¢2i−(1+r)e
> (ws−wu)−β[(ws−w1)− (w−wu)]−(1+r)e− β(w1−w) (from (M) with ” < ”)

= (ws−wu)−β[(ws−w)− (w−wu)]−(1+r)e > 0 from the first equation of (C7). (C9)

The differences in utility are all positive and thus H1=1.
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(ii) From Propositions 1 and 2, the cases to be examined are p2S = p2U = 1, p2S = 1, p2U = 0,

and p1S = p2S = p2U = 0 when q
i
2 is homogenous within each class. As shown below, q

i
2S can be

heterogenous, in which case p2S∈ (0, 1), p2U=0 also occurs.
(a) When p2S = p2U = 1, for a group 2 individual with qi2, from (18), (20), and viJCG =

uiJCG+(1+r)a, the difference in utility between when taking education and when not equals

vi2SN−vi2UN = (1−τ){(ws−wu)−β[(ws−w)−(w−wu)]}−(1+r)e, (C10)

where τ =
β−1
1+γ

ws−w
w

when p1S=1 and τ=0 when p1S=0,

which is positive under Assumption 3 from the first equation of (C7).

When p2S=1, p2U=0, from (18) and (21), the difference in utility equals

vi2SN−vi2U2 = (1−τ){(ws−wu)−β[(ws−w)−(w2−wu)]+γ(w−w2)}+γδ
³fSN−fS2́

−[ρχ(1−χ)+βωq]
h¡
q−qi2

¢2−¡q2−qi2¢2i−(1+r)e
= (1−τ){1−β[(1−N1)(1−H2)−H2]+γN1(1−H2)}(ws−wu) +γδ

³fSN−fS2́
−[ρχ(1−χ)+βωq]

h¡
q−qi2

¢2−¡q2−qi2¢2i−(1+r)e, (C11)

where τ = β−1
1+γ

ws−w
w

when p1S=1 and τ=0 when p1S=0.

When p1S=1, from (M),

RHS of (C11) ≥ (1−τ)[1+βH2+γ(1−H2)](ws−wu) +γδ
³fS1−fS2́

+[ρχ(1−χ)+βωq]
n
(q1−q)2−

h¡
q−qi2

¢2−¡q2−qi2¢2io−(1+r)e
>(1−τ)[1+βH2+γ(1−H2)](ws−wu)

+[ρχ(1−χ)+βωq]
n
(N1)

2+(q1−q)2−
h¡
q−qi2

¢2−¡q2−qi2¢2io−(1+r)e (from Assumption 2), (C12)

which is positive under Assumption 3 because

(N1)
2+(q1−q)2−

h¡
q−qi2

¢2−¡q2−qi2¢2i = (N1)
2+(q1−q)2−(q−q2)

¡
q−qi2+q2−qi2

¢
≥ (N1)

2+(q1−q)2−
£
(q)2−(q2)2

¤
= (N1)

2+(q1)
2+(q2)

2−2q1q
= (N1)

2+(q1−q2)2−2N1q1(q1−q2)
= [(N1)−(q1−q2)]2+2N1(1−q1) (q1−q2)>0.

Hence, when p2S=p2U=1 (p1S=0 or 1) and when p1S=1, p2S=1, p2U=0, the utility return to

education is positive and thus H2=F2 is an equilibrium for any F2.

(b) When p1S=p2S=p2U =0 is realized in adulthood if H2=F2 in childhood, from (19), (21),

and viJCG=u
i
JCG+(1+r)a, the difference in utility equals

vi2S2−vi2U2=[1−β(1−2H2)](ws−wu)−(1+r)e. (C13)

Thus, vi2S2−vi2U2<0 when H2 is close to 0 from β>1, whereas vi2S2−vi2U2>0 when 1−β(1−2H2)≥
2
3
⇔H2≥ 1

2
(1− 1

3β
) from Assumption 3. Hence, the unique H♦2 ∈(0, 12(1− 1

3β
)) exists such that H2=0,

or H2 is smaller than the lowest H2 satisfying p1S = p2S = p2U =0, for F2<H
♦
2 , and H2=F2 for

greater F2.
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The remaining case is when p1S = 0, p2S ∈ (0, 1], p2U = 0 is realized in adulthood (p2S = 1 at
least in the initial period) if H2 =F2 in childhood. When N1 ≤ 2β

β+γ
⇔ β(2−N1)−γN1 ≥ 0, which

is true when β ≥ γ, vi2SN−vi2U2 increase with H2 from (C11) (note τ =0 from p1S = 0). (Figure

4 in the proof of Proposition 4 is helpful for understanding the proof for this case.) BecausefSN−fS2 is greater than when p1S=p2S=p2U=0 for given H2 from (mS), the critical H2 satisfying

vi2SN−vi2U2=0 is smaller than H♦2 . In the initial period, qi2 is homogenous, thus the critical H2 is
common to everyone, which is denoted by H♦♦2 (fSN−fS2), where H♦♦ 02 (fSN−fS2)<0 from (C11). Then,

H2=0 for F2<H
♦♦
2 (
fSN−fS2) and H2=F2 for greater F2. Since H♦♦ 02 (fSN−fS2)< 0, there exists the

unique fSN−fS2 satisfying H♦♦2 (fSN−fS2)=0.When fSN−fS2 is greater than this level, H2=F2 always.
H♦♦2 (fSN−fS2) for the initial period determines whether H2=0 or H2=F2 in subsequent periods

as well, as shown next. The second last term of (C11) equals −[ρχ(1−χ)+βωq] times¡
q−qi2

¢2−¡q2−qi2¢2 = (q−q2)
¡
q−qi2+q2−qi2

¢
= N1(1−q2)

£
N1(1−q2)−2

¡
qi2−q2

¢¤
, (C14)

where the second equation is from (q1)
0=q1=1.

When F2<H
♦♦
2 (
fSN−fS2) and thus H2=0 hold in the initial period, (qi2)0=χq2+(1−χ)qi2=0 from

p2U =0. Hence,
¡
q−qi2

¢2−¡q2−qi2¢2 and thus H♦♦2 (fSN−fS2) are time-invariant. Therefore, H2=0 for
F2 smaller than the initial H

♦♦
2 (
fSN−fS2) remains true in subsequent periods.

When F2≥H♦♦2 (fSN−fS2) and thus H2=F2 initially, (C14) in the initial period, (N1)2, is greater
than the values in subsequent periods because qi2S ≥ q2. Hence, the initial H♦♦2 (fSN−fS2) is greater
than the critical values in subsequent periods. Therefore, when F2≥H♦♦2 (fSN−fS2) initially, H2=F2
continues to be true subsequently. (When H2 increases over time, after the initial period, the

level of qi2S becomes different depending on when one becomes skilled, implying that H
♦♦
2 (
fSN−fS2)

differs for those with different qi2S. The result remains unchanged because levels of H
♦♦
2 (
fSN−fS2) in

subsequent periods are smaller than in the initial period for any qi2S . In this case, (mS) also differs

for those with different qi2S, implying that p2S∈ (0, 1), p2U=0 can occur.)
When N1 >

2β
β+γ

, which occurs only when β < γ, (C11) decreases with H2. (Figure 7 in the

proof of Proposition 4 is helpful for understanding the proof for this case.) As before, H2=F2 for

any F2≥H♦2 . This is because vi2SN−vi2U2≥0 for F2≥H♦2 on the dividing line between p2S=1 and
p2S=0, (mS), from (C13), and thus vi2SN−vi2U2>0 for greater fSN−fS2. For F2<H♦2 , when fSN−fS2
is greater than the level at which (mS) and H2 =H

♦
2 intersect, where vi2SN−vi2U2 = 0, H2 = F2

because vi2SN−vi2U2 decreases with H2. In the initial period, qi2 is homogenous, thus (mS) and the
critical fSN−fS2 are common to everyone. Hence, when fSN−fS2 is smaller than this level, the unique
H♦♦2 (fSN−fS2) satisfying H♦♦ 02 (fSN−fS2)>0 exists and H2=F2 for F2≤H♦♦2 (fSN−fS2), H2=H♦♦2 (fSN−fS2)
for greater F2 satisfying p1S = 0, p2S = 1, p2U = 0. Further, since H

♦♦ 0
2 (fSN−fS2) > 0, the uniquefSN−fS2 with H♦♦2 (fSN−fS2)=0 exists, and H2=0 when fSN−fS2 is smaller than this level.

In subsequent periods, H♦♦2 (fSN−fS2) changes over time, since (C14) varies over time due toH2>0
and p2S=1, p2U=0. (It can be shown that initial H

♦♦
2 (
fSN−fS2) is smallest and H♦♦2 (fSN−fS2) increases

in early periods.) Hence, when H2 changes over time either because F2(≤ initial H♦♦2 (fSN−fS2))
increases or because F2 is close to H

♦♦
2 (
fSN−fS2), qi2S and H♦♦2 (fSN−fS2) become heterogenous, with

H♦♦2 (fSN −fS2) increasing in qi2S . Therefore, when H2 evolves, H2 in subsequent periods is given
by: when fSN−fS2 is greater than the level at which (mS) for those with mini{qi2S} and F2=H♦2
intersect, H2 = F2; when fSN−fS2 is smaller than this level and greater than the level satisfying
H♦♦2 (fSN−fS2,maxi{qi2S})=0, H2=F2 for F2≤maxn0,H♦♦2 (fSN−fS2,mini{qi2S})o, H2∈
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³
max

n
0,H♦♦2 (fSN−fS2,mini{qi2S})o, F2́ for F2∈

³
max

n
0,H♦♦2 (fSN−fS2,mini{qi2S})o,minnH♦2 ,H♦♦2 (fSN−fS2,maxi{qi2S})ó ,

andH2=min
n
H♦2 ,H

♦♦
2 (
fSN−fS2,maxi{qi2S})o for greater F2, where time-variantH♦♦2 (fSN−fS2,maxi{qi2S})

(H♦♦2 (fSN−fS2,mini{qi2S})) is the value of H♦♦2 (fSN−fS2) for those with highest (lowest) qi2S ; whenfSN−fS2 is smaller than the level satisfyingH♦♦2 (fSN−fS2,maxi{qi2S})=0, H2=0. [(mS) differs depend-
ing on qi2S. (mS) with q

i
2S=maxi{qi2S} (qi2S=mini{qi2S}) intersects with H♦♦2 (fSN−fS2,maxi{qi2S})

(H♦♦2 (fSN−fS2,mini{qi2S})) at F2=H♦2 . p2S∈ (0, 1), p2U=0 in the region between the two (mS)s.]
To summarize the results when β≥γ or N1≤ 2β

β+γ
, when fSN−fS2 is greater than the level such

that H♦♦2 (fSN−fS2)=0, H2=F2; when fSN−fS2 is smaller than this level and greater than the level
satisfying H♦♦2 (fSN−fS2) =H♦2 , H2 = 0 for F2 ∈ h0,H♦♦2 (fSN−fS2)́ and H2 = F2 for greater F2; and

when fSN−fS2 is smaller than the level satisfying H♦♦2 (fSN−fS2)=H♦2 , H2=0(=F2) for F2< (≥)H♦2 ,
where H♦♦2 (fSN−fS2) is the critical value in the initial period.

The results when β < γ and N1 >
2β
β+γ

are summarized as follows. When fSN−fS2 is greater
than the level at which (mS) for those with mini{qi2S} and H2 = H♦2 intersect, H2 = F2; whenfSN−fS2 is smaller than this level and greater than the level satisfying H♦♦2 (fSN−fS2,maxi{qi2S})=0,
H2=F2 for F2≤max

n
0,H♦♦2 (fSN−fS2,mini{qi2S})o, H2∈³maxn0,H♦♦2 (fSN−fS2,mini{qi2S})o, F2́ for

F2∈
³
max

n
0,H♦♦2 (fSN−fS2,mini{qi2S})o,minnH♦2 ,H♦♦2 (fSN−fS2,maxi{qi2S})ó ,

H2 =min
n
H♦2 ,H

♦♦
2 (
fSN−fS2,maxi{qi2S})o for F2 ∈ hminnH♦2 ,H♦♦2 (fSN−fS2,maxi{qi2S})o,H♦2´, and

H2=F2 for F2≥H♦2 ; when fSN−fS2 is smaller than the level satisfying H♦♦2 (fSN−fS2,maxi{qi2S})=0,
H2=0(=F2) for F2< (≥)H♦2 . (H♦♦2 (fSN−fS2,maxi{qi2S}) and H♦♦2 (fSN−fS2,mini{qi2S}) change over
time, and if H2 is time-invariant, they are the same and equal to H

♦♦
2 (
fSN−fS2).)

Proof of Lemma 3. (i) The proof that H2 non-decreases over time when H2=F2 below applies

to H1 and F1 as well. Then, the result follows from F1=1 in the initial period and Lemma 2 (i).

(ii) [Proof that H2 usually non-decreases] When H2 = F2 for any F2, which is the case whenfSN−fS2 is sufficiently high from the proof of Lemma 2 (ii), H2 non-decreases if λ[(1−τ)ws+T ]>e
for any H2. It can be shown that (1−τ)ws+T increases with H2 and thus is lowest at H2=0 from
the equations similar to (C15) and (C16) below. Then, because (1−τ)ws+T−(1+r)e>(1−τ)wu+T
for any H2 from Assumption 3, λ[(1−τ)ws+T ]>e from Assumption 4 (i).

When fSN−fS2 is very low, H2=0 (=F2) for F2<(≥)H♦2 from the proof of Lemma 2 (ii)(b). In

this case, H2 does not decrease from H2=F2 to H2=0 because F2 non-decreases when H2=F2
and, as shown in the proof, H♦2 is constant.

From the proof, when β≥ γ or N1≤ 2β
β+γ

, and fSN−fS2 is not very, but relatively, low, H2=0
(=F2) for F2<(≥)H♦♦2 (fSN−fS2). The shift from H2=F2 to H2=0 does not occur in this case as well,
because, as shown in the proof, when F2≥H♦♦2 (fSN−fS2) holds in the initial period, the condition
continues to hold in subsequent periods.

Finally, when β < γ, N1 >
2β
β+γ

, and fSN −fS2 is not very, but relatively, low, H2 = F2

for F2 ≤ max
n
0,H♦♦2 (fSN−fS2,mini{qi2S})o, H2 ∈ ³maxn0,H♦♦2 (fSN−fS2,mini{qi2S})o, F2́ for F2 ∈³

max
n
0,H♦♦2 (fSN−fS2,mini{qi2S})o,minnH♦2 ,H♦♦2 (fSN−fS2,maxi{qi2S})ó ,

H2 =min
n
H♦2 ,H

♦♦
2 (
fSN−fS2,maxi{qi2S})o for F2 ∈ hminnH♦2 ,H♦♦2 (fSN−fS2,maxi{qi2S})o,H♦2´, and

H2=F2 for F2≥H♦2 , implying that H2 ∈ (0, F2) for F2 ∈
³
max

n
0,H♦♦2 (fSN−fS2,mini{qi2S})o,H♦2´ .
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In this case, H2 could decrease over time under the following two situations where p1S =0, p2S =

1, p2U = 0 holds. First, when
λ

1−λ(1+r)wu < e and H2 ∈ (0, F2), F2 decreases over time and thus
H2 could decrease, because wealth holdings of those who can afford, but do not take, education

and become unskilled workers decrease over time. Second, when λ
1−λ(1+r)wu ≥ e and thus F2 is

time-invariant, H2 decreases when F2 is slightly less than H
♦♦
2 (
fSN−fS2,mini{qi2S}) or H♦♦2 (fSN−fS2,maxi{qi2S}) and this critical H2 decreases.

[Proof that H2 increases over time when p1S=1] When p1S=1, H2=F2 from Lemma 2 (ii)(a).

Then, the result is obvious when λ
1−λ(1+r)wu≥e, thus the proof focuses on the case λ

1−λ(1+r)wu<e.
When p1S=1, from (2) and (16), the disposable labor income of unskilled workers is expressed as

(1−τ)wu+
³
τ− τ2

2

´
w=wu+

β−1
1+γ

ws−w
w

∙
−wu+

µ
1− 1
2

β−1
1+γ

ws−w
w

¶
w̧ . (C15)

The derivative of this equation with respect to H2 equals

β−1
1+γ

½
− ws

(w)2
(1−N1)(ws−wu)

∙
−wu+

µ
1− 1
2

β−1
1+γ

ws−w
w

¶
w̧ +

ws−w
w

µ
1+
1

2

β−1
1+γ

¶
(1−N1)(ws−wu)

¾
= (1−N1)(ws−wu)β−1

1+γ

½
− ws

(w)2

∙µ
1+
1

2

β−1
1+γ

¶
w−

µ
wu+

1

2

β−1
1+γ

ws

¶̧
+
ws−w
w

µ
1+
1

2

β−1
1+γ

¶¾
= (1−N1)(ws−wu)β−1

1+γ

∙
ws

(w)2

µ
wu+

1

2

β−1
1+γ

ws

¶
−
µ
1+
1

2

β−1
1+γ

¶̧
. (C16)

The second derivative is negative because w increases with H2.

At H2=0, (C15) equals

(1−τ)wu+
³
τ− τ2

2

´
w=wu+

β−1
1+γ

(1−N1)(ws−wu)2
N1ws+(1−N1)wu

∙
N1 − 1

2

β−1
1+γ

(1−N1)̧ . (C17)

Thus, λ
1−λ(1+r) [(1−τ)wu+T ]>e holds at H2=0 from footnote 42 of Assumption 4 (i). Then,

because λ
1−λ(1+r) [(1−τ)wu+T ] = λ

1−λ(1+r)wu < e at H2 = 1 and the second derivative of (C15) is

negative, there exists eH2∈(0, 1) such that λ
1−λ(1+r) [(1−τ)wu+T ]>(<)e for H2<(>) eH2.

From Assumption 4 (ii), a not-small proportion of group 2 individuals do not have wealth

initially. If the proportion of such individuals is greater than 1− eH2, their descendants can accu-
mulate wealth greater than e and thus H2 jumps from a value less than eH2 to 1 at some point in
time because λ

1−λ(1+r) [(1−τ)wu+T ] > e always holds for their lineages. If λ
1−λ(1+r) [(1−τ)wu+T ]

at H2 = 0 is sufficiently greater than e (Assumption 4 (i)), eH2 is large enough that the initial
proportion of those without wealth is greater than 1− eH2. This is the case if β or ws is sufficiently
large or γ is sufficiently small because (1−τ)wu+T increases with β and ws and decreases with γ,

as shown next.

The derivative of the disposable income (C15) with respect to β−1
1+γ

equals ws−w
w

times

−wu+
µ
1− 1
2

β−1
1+γ

ws−w
w

¶
w− 1

2

β−1
1+γ

(ws−w)=(w −wu)− β−1
1+γ

(ws−w)

=

½
[N1+(1−N1)H2]−β−1

1+γ
(1−N1)(1−H2)

¾
(ws−wu)

≥
∙
N1−β−1

1+γ
(1−N1)̧ (ws−wu)≥

∙
N1− 1

3
(1−N1)̧ (ws−wu)>0,

where the second last inequality is from Assumption 1.
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The derivative of the disposable income with respect to ws equals
β−1
1+γ

times

1

w

∙
−wu+

µ
1− 1
2

β−1
1+γ

ws−w
w

¶
w̧ −ws−w

w

1

2

β−1
1+γ

+[N1+(1−N1)H2]
½
− ws
(w)2

∙
−wu+

µ
1− 1
2

β−1
1+γ

ws−w
w

¶
w̧ +

ws−w
w

µ
1+
1

2

β−1
1+γ

¶¾
=

w−wu
w
−ws−w

w

β−1
1+γ

+
N1+(1−N1)H2

w

½
ws

w

∙
−(w−wu)+1

2

β−1
1+γ

(ws−w)̧ +(ws−w)
µ
1+
1

2

β−1
1+γ

¶¾
=

1

w

n
w−wu+[N1+(1−N1)H2]

³wswu
w
−ẃ

o
+
ws−w
w

β−1
1+γ

½
−1+1

2

[N1+(1−N1)H2]
w

(ws+w)

¾
=

1

w

"
(1−N1)(1−H2)w−(1−N1)(1−H2)(wu)

2

w

#
−ws−w

w

β−1
1+γ

(1−N1)(1−H2)(wu+w)
2w

=
(1−N1)(1−H2)(wu+w)

(w)2
(ws−wu)

½
[N1+(1−N1)H2]−β−1

1+γ

(1−N1)(1−H2)
2

¾
≥ (1−N1)(1−H2)(wu+w)

(w)2
(ws−wu)

µ
N1−β−1

1+γ

1−N1
2

¶
>0,

where the last inequality is from Assumption 1.

Proof of Proposition 4. Figures 4−7 would be helpful to understand the proof.
(i) The proof of Proposition 3 (i) applies for results on steady-state identity mostly, since

H2=F2 from Lemma 2 (ii)(a) and Lemma A4 (ii) is same as Lemma A2 (ii). However, unlike the

constant H2 case, p1S = 1, p2S = 1, p2U = 0, which may be realized for low H2 when β > γ and

N1 >
β+γ
2β

(see Figure 3), shifts to p1S = p2S = p2U =1 eventually because H2 increases over time

from Lemma 3 (ii). The result on cultural variables is from Lemma A5 (i) and Proposition 3 (i).

(ii) As long as H2 = F2, F2 is constant under p2S = 0 from τ = 0. When (F2, fSN) is located
below initial (mS) with p1S=0 and F2≥H♦2 , H2=F2 from the proof of Lemma 2 (ii)(b) and thus

p1S=p2S=p2U =0 initially. p1S=p2S=p2U=0 holds in subsequent periods, because (mS) does not

shift from Lemma A4 (v) and H♦2 is constant from (C13).

When β ≥ γ or N1 ≤ β+γ
2β

(Figures 4−6), if (F2, fSN) is below initial (mS) with p1S = 0 and

F2<H
♦
2 , or if (F2,

fSN) is on or above initial (mS) with p1S=0 and below initial (mU) with p1S=0
and F2<H

♦♦
2 (
fSN−fS2) (where H♦♦ 02 (fSN−fS2)≤0), H2=0 and p1S=p2U =0 initially from the proof

of Lemma 2 (ii)(b). Similarly, when β < γ and N1 >
β+γ
2β

(Figure 7), if F2 <H
♦
2 and fSN−fS2 is

smaller than the level satisfying H♦♦2 (fSN−fS2)=0 (where H♦♦ 02 (fSN−fS2)>0), H2=0 and p1S=p2U=0
initially from the proof. H2=0 and p1S=p2U=0 hold in subsequent periods. This is because (mS)

and (mU) do not shift from Lemma A4 (vi), H♦2 is constant, H
♦♦
2 (
fSN−fS2) does not change from

(C11) and the fact that q1S=1, q2U=0 continues to hold from (13), and F2 decreases over time.

Equilibria with other values of p1S, p2S , and p2U do not shift to p1S=p2S=p2U =0 or H2=0,

p1S = p2U = 0, because (mS) with p1S = 0 in the initial period is located at a higher position

than or the same position as those in subsequent periods on the (F2, fSN) plane from Lemma A4

(i) and initial H♦♦2 (fSN−fS2) is greater (smaller) than those in subsequent periods when β ≥ γ or

N1≤ 2β
β+γ

(when β<γ and N1>
β+γ
2β
) from the proof of Lemma 2 (ii)(b).

q∗1S = 1 and q
∗
2S = q

∗
2U = 0 (q

∗
2U = 0 when H

∗
2 = 0) is from Lemma A5 (iii) and the result

that only the society starting with p1S = p2S = p2U = 0 (H2 = 0 and p1S = p2U = 0) ends up with

p∗1S=p
∗
2S=p

∗
2U=0 (H

∗
2 =0 and p

∗
1S=p

∗
2U=0).
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Figure C4: Relationship between initial (F2, fSN) and steady-state identity for the full-fledged model
with λ

1−λ(1+r)wu≤e when β≤γ and N1≤ 2β
β+γ

Figure C5: Relationship between initial (F2, fSN) and steady-state identity for the full-fledged model
with λ

1−λ(1+r)wu≤e when β>γ and N1≤ β+γ
2β
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Figure C6: Relationship between initial (F2, fSN) and steady-state identity for the full-fledged model
with λ

1−λ(1+r)wu≤e when β>γ and N1>
β+γ
2β

Figure C7: Relationship between initial (F2, fSN) and steady-state identity for the full-fledged model
with λ

1−λ(1+r)wu≤e when β<γ and N1>
2β
β+γ

12



(iii) As long as H2=F2, F2 is constant under p2S=0 from τ =0. When p1S=0, p2S=p2U =1

initially (i.e., (F2, fSN) is on or above initial (mU) with p1S=0 and below initial (M) with p1S=0),
where H2=F2 from Lemma 2 (ii)(a), and fSN is relatively low for given H2=F2 (i.e., (F2, fSN) is
below steady-state (M) with p1S =0), p1S =0, p2S = p2U =1 holds in subsequent periods because

(M) and (mU) shift downward over time on the (F2, fSN) plane from Lemma A4 (iii).

When β ≥ γ or N1 ≤ 2β
β+γ

(Figures 4−6), p1S = 0, p2S = 1, p2U = 0 initially (i.e., (F2, fSN) is on
or above initial (mS) with p1S=0 and below initial (mU) with p1S=0; when β>γ and N1>

β+γ
2β

[Figure 6], also below initial (M) with p1S=0; and F2 is greater than initial H
♦♦
2 (
fSN−fS2)), where

H2=F2 from the proof of Lemma 2 (ii)(b), and fSN is relatively high (i.e., (F2, fSN) is on or above
steady-state (mU) with p1S=0; when β>γ and N1>

β+γ
2β

[Figure 6], also below steady-state (M)

with p1S=0), the society shifts to p1S=0, p2S=p2U =1 eventually and stays in this state. This is

because (M) shifts downward over time, so does (mU) in the long run, from Lemma A4 (iv), (mS)s

in subsequent periods are not located above initial (mS) from Lemma A4 (i), and F2 is greater

than initial H♦♦2 (fSN−fS2) in subsequent periods as well from the proof of Lemma 2 (ii)(b).

When β < γ, N1>
2β
β+γ

(Figure 7), p1S =0, p2S =1, p2U =0 initially and fSN is relatively high

(i.e., (F2, fSN) is on or above initial (mS) and steady-state (mU) with p1S =0, below initial (mU)
with p1S = 0), where H2 = F2 from the proof of Lemma 2 (ii)(b), the society shifts to p1S = 0,

p2S=p2U=1 and stays in this state due to the reasons explained for the previous case.

To summarize, when β ≥ γ or N1 ≤ 2β
β+γ

(Figures 4−6), p∗1S = 0, p∗2S = p∗2U = 1 if (F2, fSN) is
located on or above initial (mS) with p1S=0, as well as steady-state (mU) with p1S=0, and below

steady-state (M) with p1S=0, and F2 is greater than initial H
♦♦
2 (
fSN−fS2); when β<γ and N1>

2β
β+γ

(Figure 7), p∗1S=0, p
∗
2S=p

∗
2U=1 if (F2,

fSN) is located on or above initial (mS) with p1S=0, as well
as steady-state (mU) with p1S=0, and below steady-state (M) with p1S=0.

When β≥γ or N1≤ 2β
β+γ

(Figures 4−6), p1S =0, p2S =1, p2U =0 initially, and fSN is relatively

low (i.e., (F2, fSN) is on or above initial (mS) with p1S =0, below steady-state (mU) with p1S =0;
when β> γ and N1>

β+γ
2β

[Figure 6], also below steady-state (M) with p1S =0; and F2 is greater

than initial H♦♦2 (fSN−fS2)), where H2=F2 from the proof of Lemma 2 (ii)(b), p1S=0, p2S=1, p2U=0
continues to hold due to the reasons explained for the case before the previous case.

When β < γ, N1 >
2β
β+γ

(Figure 7), p1S = 0, p2S = 1, p2U = 0 initially, and fSN is relatively low

(i.e., (F2, fSN) is on or above initial (mS) with p1S = 0 for F2 ≥H♦♦2 and fSN−fS2 is greater than
the level such that initial H♦♦2 (fSN−fS2)=0 for F2<H♦♦2 , and (F2, fSN) is below steady-state (mU)
with p1S=0), where H2=H

♦♦
2 (
fSN−fS2) if F2<H♦♦2 and fSN−fS2 is smaller than the level satisfying

H♦♦2 (fSN−fS2)=F2, otherwise, H2=F2, from the proof of Lemma 2 (ii)(b), p1S=0, p2S=(0, 1], p2U=0
subsequently. This is because the graph of H♦♦2 (fSN−fS2) in the initial period is located above those
in subsequent periods on the (F2, fSN) plane from the proof of Lemma 2 (ii)(b), Lemma A4 (iv)

holds, and F2 decreases (is constant) when H2< (=)F2. p2S ∈ (0, 1) is possible since H♦♦2 (fSN−fS2)
changes over time from the proof, but p∗2S=1 due to q

∗
2S=q

∗
2U=1, as shown below.

To summarize, p∗1S =0, p
∗
2S =1, p

∗
2U =0 if (F2,

fSN) is located above the region for p∗1S = p∗2S =
p∗2U =0 and the one for H

∗
2 =0 and p

∗
1S=p

∗
2U =0 and below steady-state (mU) with p1S=0, when

β>γ and N1>
β+γ
2β

(Figure 6), also below steady-state (M) with p1S=0.

q∗1S = q
∗
2S = q

∗
2U = 1 is from Lemma A5 (ii) and the result that only the society starting with

p1S=1 and never satisfying p1S=0 ends up with p
∗
1S=0, p

∗
2S=1, p

∗
2U =0 or 1.

(iv) The result can be proved similarly to Proposition 3 (iv).
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Proof of Proposition 5. (i) (a) When fSN is very high so that p1S=p2S=p2U =1 in the initial

period (i.e., initial (F2, fSN) is on or above initial (M) with p1S=1, when β>γ and N1>
β+γ
2β
, also

on or above initial (mU) with p1S =1 on the (F2, fSN) plane), p1S = p2S = p2U =1 always because,
as noted in the proof of Proposition 4 (i), the proof of Proposition 3 (i) applies. When β>γ and

N1>
β+γ
2β
, and p1S=1, p2S=1, p2U =0 initially (i.e., initial (F2, fSN) is on or above initial (M) with

p1S=1 and below initial (mU) with p1S=1), the equilibrium shifts to p1S=p2S=p2U=1 eventually

from the proof of Proposition 4 (i). Hence, p1S=1 always holds, thus H2 increases over time and

H∗2 = 1 from Lemma 3 (ii). (b) The result holds because initial (M) with p1S = 1 is downward

sloping, and as fS1 and ωq are lower, it is located at a lower position on the (F2, fSN) plane.
(ii)(a) When fSN is high enough that p1S =0, p2S = p2U =1 initially (i.e., initial (F2, fSN) is on

or above initial (mU) with p1S =0 and below initial (M) with p1S =0) or p1S =0, p2S =1, p2U =0

initially (i.e., initial (F2, fSN) is on or above initial (mS) with p1S=0 and below initial (M) and (mU)
with p1S=0; occurs only when β>γ and N1>

β+γ
2β
) and fSN is relatively high (i.e., (F2, fSN) is on or

above steady-state (M) with p1S=1, when β>γ and N1>
β+γ
2β
, also on or above steady-state (mU)

with p1S =1), the society shifts to p1S = p2S = p2U =1 eventually from the proof of Proposition 3

(i). H2 increases after the shift (when p1S=0, p2S=1, p2U=0 initially, the shift to p1S=1, p2S=1,

p2U=0 may occur first; thus, the increase may start earlier) and H
∗
2 =1 from Lemma 3 (ii).

When β>γ, N1>
β+γ
2β
, p1S=0, p2S=1, p2U=0 initially (i.e., initial (F2, fSN) is on or above initial

(mS) with p1S = 0 and below initial (M) and (mU) with p1S = 0), and fSN is relatively, but not

very, high (i.e., initial (F2, fSN) is on or above steady-state (M) with p1S=1 and below steady-state
(mU) with p1S=1), the society shifts to p1S=1, p2S=1, p2U=0 first from the proof of Proposition

3 (i). H2 starts increasing after the shift and H
∗
2 =1 from Lemma 3 (ii). (Eventually, the shift to

p1S=p2S=p2U =1 occurs.) The last result can be proved similary to (i)(b). Unlike (i)(b), ωq does

not have an effect since the last term of (M) disappears in the steady state from Proposition 4 (i).

(b) From the proof of Proposition 4 (ii) and (iii), when initial (F2, fSN) is located below steady-
state (M) with p1S = 0, when β > γ and N1 >

β+γ
2β
, also below steady-state (mU) with p1S = 0,

p1S = 0 and thus τ = 0 always. Hence, when H2 = F2 ∈ (0, 1) initially, H2 is time-invariant from
λ

1−λ(1+r)wu≤ e. When H2=0 initially, F2 decreases over time. Since H2=0 holds in subsequent
periods from the proof of Proposition 4 (ii), H∗2 =F

∗
2 =0. When H2 ∈ (0, F2) initially, which can

occur when β<γ, N1>
2β
β+γ

and initial F2 is in the intermediate range from Lemma 2 (ii)(b), F2

decreases from λ
1−λ(1+r)wu≤e. After F2 becomes low enough, H2=F2 holds and the decrease of F2

stops from the proof of Lemma 2 (ii)(b). Hence, H∗2=F
∗
2 ∈(0, 1). Because H♦♦2 (fSN−fS2) changes over

time, if H♦♦2 (fSN−fS2) decreases fast enough and F2 decreases slow enough, H2 increases, otherwise,
H2 decreases. The last result holds because steady-state (M) and (mU) (when β>γ and N1>

β+γ
2β
)

are downward sloping, and as fS1 [fS2] is higher, steady-state (M) [(mU)] is located at a higher
position on the (F2, fSN) plane.
Proof of Proposition 6. Figures 4−7 in the proof of Proposition 4 may be helpful to understand
the proof. (i) Since F2 increases even under p2S=0, and H2=F2 from Lemma 2 (ii)(a), p

∗
1S=p

∗
2S=

p∗2U =1 when fSN is greater than the level at which steady-state (M) with p1S =1 intersects with

H2=1, i.e., when fSN≥fS1. The result on the cultural variable is from Lemma A5 (i).

(ii) When (F2, fSN) is below initial (mS) with p1S = 0 and F2 ≥H♦2 in the initial period, i.e.,

p1S = p2S = p2U = 0 initially, H2 = F2 from the proof of Lemma 2 (ii)(b). Then, the proof of

Proposition 3 (ii) applies, because Lemma A4 (v) is same as Lemma A2 (v) and (mS) is upward-

sloping on the (F2, fSN) plane.
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Unlike the constant H2 case, when p1S=0, p2S=1, p2U =0 or 1 initially or when H2=0, p1S=

p2U =0 initially, and fSN is low, the shift to p1S= p2S =p2U =0 and p
∗
1S= p

∗
2S=p

∗
2U =0 can occur

since F2 increases over time. Such a shift is possible when fSN is strictly smaller than the level at

which initial (mS) intersects with H2=1, fS2+ 1
γδ
[ρχ (1−χ)+βωq](N1)2. When fSN<fS2, the shift to

p1S=p2S=p2U =0 occurs for certain because the level of fSN on steady-state (mS) with p1S=0 at
H2=1 is weakly greater than fS2, the corresponding level of fSN when q∗1S=q∗2S=q∗2U .

The result on the cultural variable is from Lemma A5 (iii). Unlike the constantH2 case, p1S=0,

p2S=1, p2U=0 or 1 can converge to p
∗
1S=p

∗
2S=p

∗
2U=0, thus q

∗
2S=q

∗
2U can be greater than 0.

(iii) When fSN ≥fS2+[ 1γδ [ρχ (1−χ)+βωq](N1)2 and fSN <fS1, the proofs of (i) and (ii) do not
apply. p∗1S =0, p

∗
2S = p

∗
2U =1 holds, because F2 increases over time and thus the society starting

with p1S =0, p2S =1, p2U =0 or H2=0, p1S = p2U =0 transits to p1S =0, p2S = p2U =1 eventually

(Figure 6). When fSN ≥fS2 and fSN <fS2+ 1
γδ
[ρχ (1−χ)+βωq](N1)2 and either H2=0, p1S = p2U =0

or p1S=0, p2S=1, p2U=0 or 1 initially, p
∗
1S=0, p

∗
2S=p

∗
2U =1 holds if initial (F2,

fSN) is located far
above initial (mS) with p1S=0 or an increase in H2 is slow compared to the (long-term) downward

shift of (mS) with p1S=0. Otherwise, as shown in the proof of (ii), p
∗
1S=p

∗
2S=p

∗
2U=0.

The result on the cultural variable is from Lemma A5 (ii). q∗1S = q
∗
2S = q

∗
2U = 1 because the

states with p1S=1 do not transit to p1S=0, p2S=p2U=1.

(iv) The result can be proved similarly to Proposition 3 (iv).

Proof of Proposition 7. (i) When initial (F2, fSN) is located on or above initial (M) with p1S=1
on the (F2, fSN) plane, p1S =1 and τ > 0 initially from the proof of Proposition 3 (i). p1S =1 and

τ>0 continue to hold from Lemma A4 (ii). Hence, the speed of convergence to H∗2 =1 is highest.
(ii) (a) When initial (F2, fSN) is located below initial (M) with p1S = 0 and fSN ≥fS1, p1S = 0 and
τ=0 initially from the proof of Proposition 3 (i). p1S=1 and τ>0 (thus the convergence to H

∗
2 =1

accelerates) eventually from the proof of Proposition 6 (i). Given F2, as fSN is higher, p1S =1 is

realized earlier and thus convergence to H∗2 =1 occurs faster. This is because (M) shifts downward
over time or does not shift (when H2 = 0, p1S = p2U = 0) from Lemma A4 (iii)−(vi). (b) WhenfSN<fS1, p1S=0 and thus τ=0 always from the proof of Proposition 6 (ii) and (iii). (iii) The result
holds because as fS1 and ωq are lower, (M) is located at a lower position on the (F2, fSN) plane and
thus τ>0 is more likely to hold.

Proof of Lemma A1. From (M), (mU), and (mS), the statement of the lemma holds iff (1−τ)(1−
H2) decreases withH2 when p1S=1. From (16), (1−τ)(1−H2) = 1

1+γ

h
β+γ− (β−1)ws

w

i
(1−H2), thus its

derivative with respect toH2 equals
1
1+γ

times −
h
β+γ− (β−1)ws

w

i
+(1−H2) (β−1)ws(w)2

(1−N1)(ws−wu) =
−
h
β+γ−(β−1)¡ws

w

¢2i
. Hence,

d[(1−τ)(1−H2)]
dH2

<0⇔ 1+γ

β−1>
³ws
w

2́

−1. (C18)

From Assumption 1, the above condition holds if 3>
¡
ws
w

¢2−1 ⇔ ws
w
< 2, which is always true

because ws
w
≤ ws

N1ws+(1−N1)wu < 2 from N1 >
1
2
.

Proof of Lemma A2. Because qi2C = q2C (C = S,U) holds in any period under the initial

condition qi2C = 0 in the model with constant H2, the notation q2C , not q
i
2C , is used. In the

following proofs, q2S ≥ q2 ≥ q2U is used, which is from Proposition 1 (i), (13), and (14).

(i) The last term of the RHS of (mS) in the initial period equals 1
γδ
[ρχ (1−χ)+βωq](N1)2

from q1S = 1 and q2S = q2U = 0. In subsequent periods, (q−q2)[(q2−q2S)+(q−q2S)] ≤ (N1)2, be-
cause when (q2−q2S)+(q−q2S) > 0 (the result is straightforward when (q2−q2S)+(q−q2S) ≤ 0),
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(q−q2)[(q2−q2S)+(q−q2S)]≤N1(1−q2)[N1(1−q2)−2(q2S−q2)]≤(N1)2 from q1 ≤ 1 and thus q ≤ N1+
(1−N1)q2. The last term of the RHS of (M) in the initial period equals 1

γδ
[ρχ (1−χ)+βωq](1−N1)2.

The expression in subsequent periods is smaller because q1−q = (1−N1)(q1−q2)≤1−N1.
(ii) When p1S=p2S=p2U=1, (qJ)

0=qJ+χ(q−qJ) from (14) and thus (q)0=N1[q1+χ(q−q1)]+
(1−N1)[q2+χ(q−q2)]= q. Hence, (q)0−(qJ)0=(1−χ) (q−qJ) and thus (M) shifts downward over
time. (q2)

0+(q)0−2(q2C)0=q2+q+χ(q−q2)−2[χq+(1−χ)q2C ]=(1−χ)(q2+q−2q2C) (C = S,U). Since
q2+q−2q2U >0 from q2S ≥ q2U , (mU) shifts downward, while (mS) shifts downward (upward) when
q2+q−2q2S > (<)0. As long as p1S=p2S=p2U=1 holds, the cultural distance between individuals
becomes 0 in the long run from Lemma A3 (i), thus (mS) shifts downward in the long run.

(iii) [When p1S=0, p2S=p2U=1] (q1)
0=q1 from (13) and (q2)

0=q2+χ(q−q2) from (14). Thus,

(q)0=N1q1+(1−N1)[q2+χ(q−q2)]=q+(1−N1)χ(q−q2). Hence, (q1)0−(q)0=q1− q−(1−N1)χ(q−q2)
and thus (M) shifts downward. (mU) shifts downward because (q)0−(q2)0= q+(1−N1)χ(q−q2)−
[q2+χ(q−q2)]=(1−χN1)(q−q2) and

(q2)
0+(q)0−2(q2U)0 = q2+χ(q−q2)+q+(1−N1)χ(q−q2)−2[χq+(1−χ)q2U ]

= q2+q−2q2U+χ[(2−N1)(q−q2)−2(q−q2U )]
= q2+q−2q2U−χ[N1(q−q2)+2(q2−q2U)]≤q+q2−2q2U .

The result that (mS) shifts downward in the long run can be proved similarly to (i).

[When p1S = 1, p2S = 1, p2U = 0] (q1)
0 = χq+(1−χ)q1 from (14), (q2)

0 = H2[χq+(1−χ)q2S]+
(1−H2)[χq2+(1−χ)q2U ]=χH2q+(1−χH2) q2 from (14) and (13), thus (q)0=N1 [χq+(1−χ)q1]+(1−
N1) [χH2q+(1−χH2) q2] . Hence,

(q1)
0−(q)0 = (1−N1) {[χq+(1−χ)q1]−[χH2q+(1−χH2)q2]}

= q1−q−[1−(1−χ)(1−N1)] (q1−q)+(1−N1)(1−χH2)(q−q2)
= {(1−χ)(1−N1)+(1−χH2)N1} (q1−q)
= {1−χ[1−N1(1−H2)]}(q1−q)<q1−q.

Thus, (M) shifts downward over time.

(q)0−(q2)0 = N1{[χq+(1−χ)q1]−[χH2q+(1−χH2)q2]}
= q−q2−(1−N1+χN1H2)(q−q2)+N1(1−χ)(q1−q)
= q−q2−[1−N1 (1−H2)]χN1(q1−q2) .

(q)0+(q2)
0−2(q2U)0 = N1[χq+(1−χ)q1]+(2−N1)[χH2q+(1−χH2) q2]−2[χq2+(1−χ)q2U ]

= (q+q2−2q2U)+N1(1−χ)(q1−q)−(1−N1)(q−q2)+(2−N1)χH2(q−q2)−2χ(q2−q2U)
= (q+q2−2q2U)+{(1−χ)(1−N1)−[(1−N1)−(2−N1)χH2]}N1(q1−q2)−2χ(q2−q2U)
= (q+q2−2q2U)−χ{[(1−N1)−(2−N1)H2]N1(q1−q2)+2(q2−q2U)} .

From these equations,
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£
(q)0−(q2)0

¤£
(q)0+(q2)

0−2(q2U)0
¤

=(q−q2)(q+q2−2q2U)−χN1(q1−q2)
⎡⎣ {[(1−N1)−(2−N1)H2]N1(q1−q2)+2(q2−q2U)}
+[1−N1(1−H2)]

µ
(q+q2−2q2U)

−χ{[(1−N1)−(2−N1)H2]N1(q1−q2)+2(q2−q2U)}
¶⎤⎦

=(q−q2)(q+q2−2q2U)−χN1(q1−q2)
µ{1−χ[1−N1(1−H2)]}{[(1−N1)−(2−N1)H2]N1(q1−q2)+2(q2−q2U)}

+[1−N1 (1−H2)](q+q2−2q2U)
¶

=(q−q2)(q+q2−2q2U)−χN1(q1−q2)
⎛⎝{1−χ[1−N1(1−H2)]}{(1−N1)(1−H2)N1(q1−q2)+2(q2−q2U)}−{1−χ [1−N1(1−H2)]}H2N1(q1−q2)

+[1−N1(1−H2)][N1(q1−q2)+2(q2−q2U)]

⎞⎠
=(q−q2)(q+q2−2q2U)−χN1(q1−q2)

⎛⎝{1−χ[1−N1(1−H2)]}{(1−N1)(1−H2)N1(q1−q2)+2(q2−q2U)}+{(1−N1)(1−H2)+χH2[1−N1(1−H2)]}N1(q1−q2)
+[1−N1(1−H2)]2(q2−q2U)

⎞⎠.
Thus, (mU) shifts downward over time.

The result on (mS) can be proved similarly to the result when p1S=0 and p2S=p2U =1.

(iv) Because (q1)
0 = q1 from (13) and (q2)

0 = χH2q+(1−χH2) q2 from the proof of (iii) when

p1S=1, p2S=1, p2U =0, (q)
0=q+χ(1−N1)H2(q−q2). Hence, (q1)0−(q)0=q1−q−χ(1−N1)H2(q−q2)

and thus (M) shifts downward. The result on (mU) and (mS) can be proved similarly to the one

on (mS) of (iii).

(v) When p1S=p2S=p2U=0, (qJ)
0=qJ (J=1, 2) and (q)0=q from (13). Hence, (q)0−(qJ)0=q−qJ

and thus (M) does not shift over time. From (13) and q2S ≥ q2U ,
(q)0+(q2)

0−2(q2U)0 = q2+q−2q2U−2χ(q2−q2U)≤q2+q−2q2U ,
(q)0+(q2)

0−2(q2S)0 = q2+q−2q2S+2χ(q2S−q2)≥q2+q−2q2S ,

where the first (second) inequality holds with ”<” (”>”) unless q2S = q2U . Thus, the results on

(mU) and (mS) hold.

Proof of Lemma A3. (i) When p∗1S = p
∗
2S = p

∗
2U = 1, q

∗
1S = q

∗
2S = q

∗
2U = q

∗ from (14). q∗ = q#

because (q)0=q when p1S=p2S=p2U=1 from (14).

(ii) When p∗1S = p
∗
2S =1 and p

∗
2U =0, q

∗
1S = q

∗
2S = q

∗
2U = q

∗
1= q

∗
2 from (13) and (14). From (14),

when p1S=p2S=1, p2U=0,

(q1)
0=χ [N1q1+(1−N1)q2]+(1−χ)q1
=[χN1+(1−χ)]q1+χ(1−N1)q2, (C19)

and from (14) and (13),

(q2)
0=H2[χq+(1−χ) q2S]+(1−H2)[χq2+(1−χ)q2U ]
=χH2[N1q1+(1−N1)q2]+(1−H2)q2
=χH2N1q1+(1−χH2N1) q2. (C20)

These equations can be expressed asµ
(q1)

0

(q2)
0

¶
=

µ
a 1−a
b 1−b

¶µ
q1
q2

¶
, (C21)

where a ≡ χN1+(1−χ) and b ≡ χH2N1 in this proof, in which a > b.

Thus, µ
q∗1
q∗2

¶
= lim
n→∞

µ
a 1−a
b 1−b

¶nÃ
q
†
1

q
†
2

!
, (C22)
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where

lim
n→∞

µ
a 1−a
b 1−b

¶n
= lim
n→∞

"µ
a 1−a
b 1−b

¶2µ
a 1−a
b 1−b

¶n−2#

= lim
n→∞

"µ
a2+(1−a)b (1+a−b)(1−a)
(1+a−b)b (1−b)2+(1−a)b

¶µ
a 1−a
b 1−b

¶n−2#

= lim
n→∞

⎡⎣⎛⎝a3+[1+(a−b)+a](1−a)b h
1+(a−b)+(a−b)2

i
(1−a)h

1+(a−b)+(a−b)2
i
b (1−b)3+[1+(a−b)+(1−b)](1−a)b

⎞⎠µa 1−a
b 1−b

¶n−3⎤⎦

= lim
n→∞

⎡⎢⎢⎢⎢⎣
⎛⎝a4+n1+(a−b)+(a−b)2+[1+(a−b)+a]ao(1−a)b h

1+(a−b)+(a−b)2+(a−b)3
i
(1−a)h

1+(a−b)+(a−b)2+(a−b)3
i
b (1−b)4+

n
1+(a−b)+(a−b)2+[1+(a−b)+(1−b)](1−b)

o
(1−a)b

⎞⎠
×
µ
a 1−a
b 1−b

¶n−4
⎤⎥⎥⎥⎥⎦

= lim
n→∞

µPn−1
t=0 (a−b)tb

Pn−1
t=0 (a−b)t(1−a)Pn−1

t=0 (a−b)tb
Pn−1
t=0 (a−b)t(1−a)

¶
(because q∗1 = q

∗
2)

=
1

1−a+b
µ
b 1−a
b 1−a

¶
. (C23)

Hence, q∗1S=q
∗
2S=q

∗
2U=

1
1−(1−H2)N1

h
H2N1q

†
1+(1−N1)q†2

i
.

(iii) When at least one of p∗2S and p
∗
2U equals 1, q

∗
2C = q

∗ must hold for C such that p∗2C = 1
from (14) and q∗2C0 = q

∗
2 must hold for C

0 such that p∗2C0 =0 from (13). Thus, q∗2C = q
∗
2C0 = q

∗
2= q

∗
1,

which equals q∗1S = q
[
1 from (iv). (iv) When p∗1S =0, q

∗
1S = q

∗
1 from (13). q∗1= q

[
1 because (q1)

0= q1
when p1S=0 from (13). The result for q∗2S and q

∗
2U can be proved similarly.

Proof of Lemma A4. As in the proof of Lemma A2, the fact qi2S ≥ q2 ≥ qi2U is used in the
proof. (i) The proof of Lemma A2 applies. (ii) When p1S=p2S=p2U =1, since H2 increases over

time (Lemma 3 (ii)),

(q2)
0 = (H2)

0(q2S)
0+
£
1−(H2)0

¤
(q2U )

0

= H2[χq+(1−χ)q2S ]+
£
(H2)

0−H2
¤£
χq+(1−χ)E(qi2U |C 0=S)

¤
+
£
1−(H2)0

¤£
χq+(1−χ)E(qi2U |C 0=U)

¤
= H2[χq+(1−χ)q2S ]+(1−H2)[χq+(1−χ)q2U ]
= χq+(1−χ)q2.

The above equation is the same as in the model with constant H2, hence the result can be proved

as in Lemma A2 (ii). Unlike the model with constant H2, q
i
2S is heterogenous among lineages with

different periods of becoming skilled, so (mS) differs for those with different qi2S. The same result as

in the previous model holds for each of the (mS)s. (As will be clear from the proof of Proposition 4,

qi2U is homogenous due to the initial condition q
i
2U =0 and the fact that only children of unskilled

workers are unskilled.)

(iii) When p1S = p2S =1, p2U = 0, H2 increases over time from Lemma 3 (ii) and when p1S =

0, p2S = p2U = 1, H2 non-decreases over time from Lemma 2 (ii)(a) and Lemma 3 (ii). Thus, as

in the above proof for (ii), it can be shown that the result is same as in the model with constant

H2. (As in (ii), q
i
2U is homogenous, which will be clear from the proof of Proposition 4, while qi2S

becomes heterogenous when H2 increases over time.)

(iv) In the initial period, when p1S =0, p2S =1, p2U =0 is realized in adulthood if H2=F2 in

childhood (i.e., (F2, fSN) is on or above initial (mS) with p1S =0 and below initial (M) and (mU)
18



with p1S=0), from the proof of Lemma A2 (ii), the realized H2 is positive and thus p2S=1, p2U=0

is true under the following cases: If fSN−fS2 is sufficiently large, H2=F2; otherwise, when β ≥ γ

or N1 ≤ 2β
β+γ

, H2 = F2 for F2 ≥H♦♦2 (fSN−fS2); when β < γ, N1 >
2β
β+γ

, and fSN−fS2 is not small,
H2=F2 for F2<H

♦♦
2 (
fSN−fS2) and H2=H♦♦2 (fSN−fS2) for F2≥H♦♦2 (fSN−fS2). In subsequent periods,

qi2S becomes heterogenous and p2S ∈ (0, 1), p2U = 0 may hold either when H2 = F2 increases or
when β<γ , N1>

2β
β+γ

, and H♦♦2 (fSN−fS2) changes over time. Taking into account the possibility of
becoming p2S∈ (0, 1),

(q2)
0 = H2p2S[χq+(1−χ)q2S ]+H2(1−p2S)[χq2+(1−χ)q2S]+(1−H2)[χq2+(1−χ)q2U ]
= q2+χ[H2p2S(q−q2S)+H2(1−p2S)(q2−q2S)+(1−H2)(q2−q2U)]
= q2+χH2p2S[q−q2S+(1−H2)(q2S−q2U)]
= q2+χH2p2S(q−q2) .

Thus, (q)0=q+χ(1−N1)H2p2S(q−q2). Hence, (q1)0−(q)0=q1−q−χ(1−N1)H2p2S(q−q2) and thus (M)
shifts downward. The result on (mU) and (mS) can be proved similarly to the model with constant

H2. (As shown in the proof of Lemma 2 (ii)(b), when β<γ, N1>
2β
β+γ

, and H2∈ (0, F2), H2 may
decline, in which case qi2U too becomes heterogenous and (mU) differs for those with different q

i
2U ,

but p2U =0 is always true.)

(v) When p1S = p2S = p2U =0 is realized in adulthood if H2=F2 in childhood (i.e., (F2, fSN) is
below initial (mS) with p1S =0), H2=F2 is true for F2≥H♦2 from the proof of Lemma 2 (ii)(b).

The result can be proved as in Lemma A2 (v). (As in (ii), qi2U is homogenous, while q
i
2S becomes

heterogenous when H2 increases over time.)

(vi) When p1S=p2S=p2U =0 holds with H2=F2, H2=0 and p1S=p2U=0 are true for F2<H
♦
2

if β≥ γ or N1≤ 2β
β+γ

, otherwise, they are true for F2<H
♦
2 when

fSN−fS2 is small from the proof

of Lemma 2 (ii)(b). When p1S =0, p2S =1, p2U =0 holds with H2=F2, H2=0 and p1S= p2U =0

are realized for F2<H
♦♦
2 (
fSN−fS2) when β≥γ or N1≤ 2β

β+γ
from the proof of the lemma. As shown

in the proof, shifts from other states to H2=0 and p1S=p2U =0 do not occur. Hence, q
i
1=1 and

qi2=0 for any i hold for any period, thus (M), (mU), and (mS) do not shift.

Proof of Lemma A5. Proofs are provided only for results different from Lemma A3. (i) When
λ

1−λ(1+r)wu ≤ e, p∗1S = p∗2S = p∗2U = 1 when p1S = p2S = p2U = 1 or p1S = p2S = 1, p2U = 0 initially,
and p∗1S = p

∗
2S = p

∗
2U = 1 may hold when p1S = 0, p2S = 1, p2U = 0 or 1 initially from the proof of

Proposition 4 (i). When p1S = p2S = p2U =1 initially, p1S = p2S = p2U =1 always from the proof.

Hence, (q)0 = q, thus, under the initial condition q1S =1, q2S = q2U =0, q∗1S = q
∗
2S = q

∗
2U = q

∗ =N1
holds. In other cases, after the society shifts to p1S = p2S = p2U =1, (q)

0=N1[χq+(1−χ)q1]+(1−
N1)(χq+(1−χ){H2q2S+(1−H2)q2U})=q. Thus, q∗1S=q∗2S=q∗2U=q∗=q#∈(0, 1).

When λ
1−λ(1+r)wu > e, p

∗
1S = p

∗
2S = p

∗
2U = 1 when

fSN >fS1 from Proposition 6 (i). Thus, from

Figures 4−7, unless β > γ and N1 >
β+γ
2β
, p2S = p2U = 1 always. When β > γ and N1 >

β+γ
2β
,

p1S = 0 or 1, p2S = 1, p2U = 0 may converge to p
∗
1S = p

∗
2S = p

∗
2U = 1 from Figure 6. As with

the case λ
1−λ(1+r)wu ≤ e, if p1S = p2S = p2U = 1 initially, q∗1S = q∗2S = q∗2U = q∗ = N1, otherwise,

q∗1S=q
∗
2S=q

∗
2U=q

∗=q#∈(0, 1).
(iii) When p∗2C =0 (C=S,U), q

∗
2C = q

∗
2 from (13). q∗2≥ q[2 because (q2)0≥ q2 from the proof of

Lemma A4 (v).
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