
Appendix C (Online Appendix) Proof of lemmas and propositions
of the general case

Proof of Lemma 4. The result is proved by examining under what conditions each case is
realized.

(i) [Case 1: e¤2L = 0 and the indi¤erence condition holds for those with a ¸ e¤2N ] As
explained in Appendix A, H2NH2L

is determined by (28) independently of the distribution of wealth,
as in the unconstrained case with e¤2L = 0. Thus, this case exists i¤ the condition for e¤2L = 0 in
Section 3 holds, i.e., when s · s or s ¸ s, and, from (A3) in Appendix A, the following is true
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which can be expressed as
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Because the RHS of the above equation decreases with e¤2N and thus increases with s from (21)
and (28), for given F (¢), there exists a critical s 2 (0; 1) such that the condition holds for greater s
or the condition holds for any s; if the RHS of the equation at s = 1 is strictly greater than the LHS,
i.e., 1¡®® (1¡°) < 1¡F (0)

F (0) , F (0) < ®
1¡°(1¡®) : (e¤2N ! 0 as s ! 1 from (21) and (28).) For given

s, the condition tends to hold when the proportion of those with adequate wealth for education is
high, i.e., F (e¤2N) is low. Thus, the critical s; which is denoted by s+(F ) 2 [0; 1); increases as the
proportion of those with adequate wealth is lower. (s+(F ) is set to be 0 when the proportion is
high enough that (C2) holds for any s:) Hence, the economy is in Case 1 if F (0) < ®

1¡°(1¡®) and
either s 2 [s+(F ); s] (when s+(F ) < s) or s 2 [max fs; s+(F )g ; 1]:

[Case 2: e¤2L = 0 and the indi¤erence condition holds for those with a = ba0 < e¤2L]

This case exists i¤ the condition for e¤2L = 0, °±Ls®T2
®TN

1¡®
³
H2N
H2L

´1¡®
(l)

°
¡1

· 1 (in the proof

of Lemma 1), holds and the condition for ba0 < e¤2N holds, which, from (A5) in Appendix A, equals

H2N

H2L
>

[±N(1¡s)e¤2N ]°(1¡F (e¤2N))

(l)°F (e¤2N )
: (C3)

This equation holds with equality when ba0 = e¤2N from (A5) and, as the proportion of those
with adequate wealth rises (i.e., F (a) for given a decreases), ba0 increases and converges to e¤2N
from the proof of Lemma 5 (ii). Hence, the above equation with " = " divides this case and Case
1, which, from the proof for Case 1, can be expressed as

1¡®

®
(1¡°) =

1¡F (e¤2N )

F (e¤2N )
: (C4)

From the proof for Case 1, when s · s or s ¸ s, the critical s; s+(F ); if exists (thus F (0) <
®

1¡°(1¡®) must hold), increases as the proportion of those with adequate wealth falls, and given
F (¢), the economy is in Case 2 (Case 1) for s < (¸)s+(F ); while if F (0) ¸

®
1¡°(1¡®) ; (C2) does not
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hold for any s and thus Case 2 is realized for any s. Hence, when s · s or s ¸ s, Case 2 is realized
if F (0) ¸

®
1¡°(1¡®) or if s 2 [0;minfs+(F ); sg] when s+(F ) > 0 or s 2 [s; s+(F )) when s+(F ) > s:

Unlike Case 1, the condition for e¤2L = 0 holds for some ranges of s 2 (s; s) too. In particular,

the smallest (largest) critical s satisfying °±Ls®T2
®TN

1¡®
³
H2N
H2L

1́¡®
(l)

°
¡1 = 1; if exists, is larger

than s (smaller than s) and increases (decreases) as the proportion of those with adequate wealth
falls. (It is not clear if there exist more than two critical values of s.) This is because H2N

H2L
decreases

as the proportion falls from Lemma 5 (ii) and thus H2N
H2L

for given s is lower than Case 1.
Denote the smallest (largest) critical s by s(F ) (s(F )). Then, if s(F ) and s(F ) exist, which

is the case when the proportion of those with adequate wealth is high enough (because s(F ) and
s(F ) respectively converge to s and s as the proportion rises), the economy is in Case 2 at least for
s 2 [0; minfs+(F ); s(F )g) when s+(F ) > 0 and for s 2 (s(F ); s+(F )] when s+(F ) > s: (If critical
values other than s(F ) and s(F ) exist; some ranges of s 2 [s(F ); s(F )] too belong to this case.)

When the proportion of those with adequate wealth is low enough, s(F ) and s(F ) do not exist
and the economy is in Case 2 for any s. This is because, as the proportion falls, H2N

H2L
decreases

and converges to 0 from the proof of Lemma 5 (ii) and thus °±Ls®T2
®TN

1¡®
³
H2N
H2L

1́¡®
(l)

°
¡1 < 1

for any s:
(ii) [Case 3: e¤2L > 0 and the indi¤erence condition holds for those with a ¸ e¤2N ]

As explained in Appendix A, H2NH2L
(thus e¤2N and e¤2L) is determined by (29) independently of the

distribution of wealth, as in the unconstrained case with e¤2L > 0. Thus, this case exists i¤ the
condition for e¤2L > 0 in Section 3 holds, i.e., when s 2 (s; s), and, from (A8) in Appendix A, the
following is true

H2N

H2L
·

[±N(1¡s)e¤2N ]°(1¡F (e¤2N))

(l+±Lse¤2L)°[F (e¤2N)¡F (e¤2L)]+
R e¤2L
0 (l+±Lsa)°dF (a)+(l)°F (0)

: (C5)

As the proportion of those with adequate wealth falls (i.e., F (a) for given a increases), the RHS
of this equation decreases, thus the condition holds with equality when the proportion is lowest in
this case (for given s). Hence, the economy is in this case if s 2 (s; s) and the proportion of those
with adequate wealth is high enough that the above condition is satis…ed.

[Case 4: e¤2L > 0 and the indi¤erence condition holds for those with a = ba 2 [e¤2L; e¤2N)]

This case exists i¤ the condition for e¤2L > 0, °±Ls®T2
®TN

1¡®
³
H2N
H2L

´1¡®
(l)

°
¡1 > 1 (in the proof

of Lemma 1) holds (thus s 2 (s(F ); s(F )) must hold) and the condition for ba 2 [e¤2L; e¤2N) holds,
which equals, from (A11) in Appendix A,
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35 :

(C6)
As the proportion of those with adequate wealth rises, ba rises from the proof of Lemma 5 (ii).

Thus, when the proportion is supremum in this case, ba ! e¤2N and H2N
H2L

!

[±N (1¡s)]
°(e¤2N )

°(1¡F (e¤2N))

(l+±Lse
¤

2L)
°(F (e¤2N)¡F (e

¤

2L))+
R e¤2L
0 (l+±Lsa)°dF (a)+(l)°F (0)

from (A11). Hence, H2NH2L
=

[±N (1¡s)]
°(e¤2N )

°(1¡F (e¤2N))

(l+±Lse
¤

2L)
°(F (e¤2N)¡F (e

¤

2L))+
R e¤2L
0 (l+±Lsa)°dF (a)+(l)°F (0)

divides this case and Case 3. Given s, the proportion of those with adequate wealth is lower (i.e.,
F (a) for given a is higher) than Case 3, because ba ! e¤2N (ba = e¤2N) when the proportion is
supremum (lowest) in this case (in Case 3).

At s = s; s and thus e¤2L = 0; the equation becomes H2N
H2L

=
[±N (1¡s)e

¤

2N ]
°(1¡F (e¤2N ))

(l)°F (e¤2N )
, the same as

Case 1: That is, the dividing line and s = s+(F ) intersect at s = s; s:
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[Case 5: e¤2L > 0 and the indi¤erence condition holds for those with a = ea < e¤2L]

This case exists i¤ the condition for e¤2L > 0, °±Ls®T2
®TN

1¡®
³
H2N
H2L

´1¡®
(l)

°
¡1 > 1 (in the proof

of Lemma 1), holds (thus s 2 (s(F ); s(F )) must hold) and the condition for ea < e¤2L holds, which
equals, from (A14) in Appendix A,

H2N

H2L
>
[±N (1¡s)]

°

·
(e¤2N )

°(1¡F (e¤2N))+
R e¤2N
e¤2L

a°dF (a)̧R e¤2L
0 (l+±Lsa)°dF (a)+(l)°F (0)

: (C7)

As the proportion of those with adequate wealth rises, ea rises from the proof of Lemma 5 (ii).

Thus, when the proportion is supremum in this case, ea ! e¤2L and H2N
H2L

!

[±N (1¡s)]
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from (A14). Hence, H2N
H2L

=
[±N (1¡s)]

°

·
(e¤2N )

°(1¡F (e¤2N))+
R e¤2N
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a°dF (a)̧R e¤2L
0 (l+±Lsa)°dF (a)+(l)°F (0)

divides this case and Case 4.

Given s, the proportion of those with adequate wealth is lower (i.e., F (a) for given a is higher)
than Case 4, because ea ! e¤2L (ba = e¤2L) holds when the proportion is supremum (lowest) in this
case (in Case 4).

When e¤2L = 0; the equation becomes H2N
H2L

=
[±N (1¡s)]

°

·
(e¤2N )

°(1¡F (e¤2N))+
R e¤2N
0 a°dF (a)̧

(l)°F (0)
, which is

di¤erent from H2N
H2L

=
[±N (1¡s)e

¤

2N ]
°(1¡F (e¤2N ))

(l)°F (e¤2N )
; i.e., s = s+(F ): Hence, the dividing line between Case

4 and Case 5 does not intersect with s = s+(F ) and the dividing line between Case 3 and Case 4
at s = s; s: This implies that when s is close to s or s; Case 5 is not realized.

Proof of Lemma 5. (i) As explained in in Appendix A, H2NH2L
(thus e¤2N and e¤2N) is determined

independently of the distribution of wealth by (28) [(29)] when e¤2L = (>)0. If the proportion of
those with adequate wealth falls (i.e., F (a) increases for given a) so that the numerator of (A3)
[(A8)] in Appendix A decreases and the denominator increases when e¤2L = (>)0, p2N must increase
for the equation to hold.

(ii) [Case 2: e¤2L = 0 and the indi¤erence condition holds for a = ba0 < e¤2L] Because

TN(±N(1¡s)ba0)°¡ 1
1¡®

³
TNH2N
T2H2L

´® ba0 increases with ba0 from ba0 < e¤2N ; the relationship between H2N
H2L

and ba0 satisfying (A4) in Appendix A is positive. Because e¤2N decreases with H2N
H2L

from (21), the

relationship between H2N
H2L

and ba0 satisfying (A5) in Appendix A is negative. When the proportion
of those with adequate wealth falls (i.e., F (a) increases for given a) so that the numerator of (A5)
decreases and the denominator increases, H2NH2L

satisfying (A5) must decrease for given ba0. Hence,
H2N
H2L

and ba0 decrease from (A4) and (A5). From the equations, when the proportion falls to the

point that F (0) ! 1; H2NH2L
! 0 and ba0 ! 0; while when it rises su¢ciently, ba0 ! e¤2N ; which is the

threshold of Case 1 (note that e¤2N decreases with H2N
H2L

):
[Case 4: e¤2L > 0 and the indi¤erence condition holds for a = ba 2 [e¤2L; e¤2N)] Because

TN(±N(1¡s)ba)°¡

1
1¡®

³
TNH2N
T2H2L

´® ba increases with ba from ba < e¤2N ; the relationship between H2N
H2L

and ba satisfying (A10) in Appendix A is positive. Because e¤2N decreases with H2N
H2L

from (21)

and e¤2L increases with H2N
H2L

from (24), the relationship between H2N
H2L

and ba satisfying (A11) in
Appendix A is negative. When the proportion of those with adequate wealth falls so that the
numerator of (A11) decreases and the denominator increases, H2NH2L

satisfying (A11) must decrease

for given ba. Hence, H2N
H2L

and ba decrease from (A10) and (A11). From the equations, when the
proportion rises su¢ciently; ba ! e¤2N ; which is the threshold of Case 3 (note that e¤2N decreases
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and e¤2L increases with H2N
H2L

). By contrast, when the proportion and thus H2N
H2L

fall su¢ciently;
either ba ! e¤2L, which is the threshold of Case 5, or the condition for e¤2L = 0 holds with equality,

i.e., °±Ls®T2
®TN

1¡®
³
H2N
H2L

´1¡®
(l)

°
¡1 = 1, and the economy shifts to Case 2.

[Case 5: e¤2L > 0 and the indi¤erence condition holds for a = ea < e¤2L] The relationship
between H2N

H2L
and ea satisfying (A13) in Appendix A is positive, while the relationship between H2N

H2L

and ea satisfying (A14) is negative because e¤2N decreases with H2N
H2L

from (21). When the proportion
of those with adequate wealth falls so that the numerator of (A14) decreases and the denominator
increases, H2NH2L

satisfying (A14) must decrease for given ea. Hence, H2NH2L
and ea decrease from (A13)

and (A14). From the equations, when the proportion rises su¢ciently; ea ! e¤2L (note that e¤2N
decreases with H2N

H2L
and e¤2L < e¤2N), whereas when the proportion and thus H2N

H2L
fall su¢ciently,

the condition for e¤2L = 0 holds with equality, i.e., °±Ls®T2
®TN

1¡®
³
H2N
H2L

´1¡®
(l)

°
¡1 = 1, and the

economy shifts to Case 2.

Proof of Proposition 3. The result on human capital is from Lemma 5 and (12), (13), (21),
and (24). (i) Because H2N

H2L
does not depend on the distribution of wealth from Lemma 5 (i), net

earnings and consumption too do not depend on the distribution.
(ii) From Appendix A, consumption of those who have relatively large wealth and choose the

national sector is given by (30) for those with a ¸ e¤2N and by (A6) for those with a < e¤2N , while
consumption of those who have relatively small wealth and choose the local sector is given by (A12)
for those with a ¸ e¤2L (Case 4), and for those with a < e¤2L by (A7) (Case 2) and (A9) (Cases 4
and 5). Net earnings in unit of the …nal good equal consumption minus wealth.

Because H2N
H2L

decreases as the proportion of those with adequate wealth falls from Lemma 5 (ii),
from these equations, consumption and net earnings of those who choose the local sector decrease
and of those who choose the national sector increase. Hence, consumption and earnings inequalities
between any pairs of national and local sector workers increase.

Proof of Lemma 6. As explained in in Appendix A, in Cases 1 and 3, H2NH2L
is determined by (29)

when e¤2L > 0 and by (28) when e¤2L = 0, same as when everyone has enough wealth for education.
Thus, Lemma 2 applies.

In Case 2, as shown in the proof of Lemma 5 (ii), the relationship between H2N
H2L

and ba0 satisfying

(A4) in Appendix A is positive, and the relationship between H2N
H2L

and ba0 satisfying (A5) is negative.

For given ba0; an increase in s lowers H2N
H2L

satisfying (A4). From (A5) and (21), for given ba0; an

increase in s lowers H2N
H2L

satisfying (A5). Therefore, an increase in s lowers H2N
H2L

:

In Case 4; as shown in the proof of Lemma 5 (ii), the relationship between H2N
H2L

and ba satisfying
(A10) in Appendix A is positive, and the relationship satisfying (A11) is negative. For given ba; an
increase in s lowers H2N

H2L
satisfying (A10), because the derivative of the expression inside the curly

bracket of the RHS of the equation with respect to s equals

1

s2

(
°s

·
(°±Ls)°®T2

®TN
1¡®

³
H2N
H2L

1́¡®
¸ 1
1¡°

¡

l

±L

)
> 0 from (24).

From (A11), (21), and (24), for given ba; an increase in s lowers H2N
H2L

satisfying (A11), because the
derivative of se¤2L with respect to s equals
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¡l

)
+ 1
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³
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!

= 1
(1¡°)±Ls

·
®°±LsT2

®TN
1¡®

³
H2N
H2L

1́¡®
¸ 1
1¡°

> 0:

Therefore, an increase in s lowers H2N
H2L

:

In Case 5; as shown in the proof of Lemma 5 (ii), the relationship between H2N
H2L

and ea satisfying
(A13) in Appendix A is positive, and the relationship satisfying (A14) is negative. For given ea;
an increase in s lowers H2N

H2L
satisfying (A13). From (A14) and (21), for given ea; an increase in s

lowers H2N
H2L

satisfying (A14). Therefore, an increase in s lowers H2N
H2L

:

Proof of Lemma 7. Only the proof of the result on the consumption is presented, because net
earnings in unit of the …nal good equal consumption minus wealth. (i) [Case 1: the indi¤erence
condition holds for a ¸ e¤2N ] Because c2 for any a is given by (30) from Appendix A, Lemma 3
(i) applies and thus c2 decreases with s.

[Case 2: the indi¤erence condition holds for a = ba0 < e¤2L] Because H2N
H2L

decreases with
s from Lemma 6; c2 for a < ba0 decreases with s from (A7) in Appendix A. From (30) and (A6)

in Appendix A,
dc2
ds

for a ¸ ba0 is proportional to ¡

·
°
1¡s + ®

³
H2N
H2L

¡́1 d
H2N
H2L
ds

¸
. In the following,

°
1¡s + ®

³
H2N
H2L

¡́1 d
H2N
H2L
ds > 0 is shown.

Totally di¤erentiating (A4) givesh
°ba0TN(±N(1¡s)ba0)°¡ 1

1¡®

³
TNH2N
T2H2L

®́i
dba0= °

1¡sTN(±N(1¡s)ba0)°ds+®
³
H2N
H2Ĺ

¡1h
1
1¡®

³
TNH2N
T2H2L

®́ ba0+ 1
1¡®

H2N
H2L

TN (l)
°
i
dH2NH2L

;

(C8)

where °ba0TN(±N (1¡s)ba0)°¡ 1
1¡®

³
TNH2N
T2H2L

®́
> 0 from ba0 < e¤2N .

Totally di¤erentiating (A5) gives

°
1¡s

H2N
H2L

ds+dH2NH2L
¡

[±N (1¡s)]
°°(e¤2N)

°¡1(1¡F (e¤2N))

(l)°F (ba0) de¤2N+
[±N (1¡s)]

°

½
F (ba0)(ba0)°+·

(e¤2N )
°(1¡F (e¤2N))+

R e¤2Nba0 (a)°dF (a)

¾̧
dF (ba0)

(l)° [F (ba0)]2 dba0=0;

(C9)
where, by totally di¤erentiating (21),

de¤2N = ¡

·
°
1¡sds + ®

³
H2N
H2L

¡́1
dH2NH2L

¸
e¤2N
1¡° : (C10)

When the …rst and third equations are substituted into the second one and divided by ds, the

resulting equation consists of the term associated with °
1¡s

H2N
H2L

+
d
H2N
H2L
ds ; the one associated with

°
1¡s

H2N
H2L

+®
d
H2N
H2L
ds ; and the one associated with °

1¡s
H2N
H2L

+ ®
TN (±N (1¡s)ba0)° 1

1¡®

h³
TNH2N
T2H2L

®́ ba0+H2N
H2L

TN(l)
°
idH2NH2L

ds :

Since °
1¡s

H2N
H2L

+ ®
d
H2N
H2L
ds is the largest from

d
H2N
H2L
ds < 0 (Lemma 6) and (A4); °

1¡s
H2N
H2L

+ ®
d
H2N
H2L
ds > 0:

Therefore, c2 for a ¸ ba0 decreases with s.
(ii) [Case 3: the indi¤erence condition holds for those with a ¸ e¤2N ] In Case 3, as

explained in Appendix A, H2N
H2L

is determined by (29) as in the unconstrained case. Since c2 for
a ¸ e¤2L is given by (30) as in the unconstrained case from Appendix A, Lemma 3 (ii) applies.

Since c2 for a < e¤2L is given by (A9) in Appendix A,
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dc2
ds

/ (1 ¡ ®)
³
H2N
H2L

¡́1 dH2NH2L

ds
+ °

±La

l + ±Lsa
: (C11)

Because
d
H2N
H2L
ds < 0 from Lemma 6, when a is su¢ciently small,

dc2
ds

< 0 for any s in this case.C1

For any a < e¤2L,

(1¡®)
³
H2N
H2L

¡́1 dH2NH2L

ds
+ °

±La

l+±Lsa
< (1¡®)

³
H2N
H2L

¡́1 dH2NH2L

ds
+ °

±Le¤2L
l+±Lse¤2L

=

1¡®
s

(
1¡°¡s
1¡s

·
(1¡°)1¡°[(1¡®)±N(1¡s)]°

³
H2N
H2Ĺ

¡®
¸ 1
1¡°

¡

·
®(±Ls)°

³
H2N
H2Ĺ

1¡®
¸ 1
1¡°

)

®

·
(1¡°)1¡° [(1¡®)±N (1¡s)]°

³
H2N
H2Ĺ

¡®
¸ 1
1¡°

+(1¡®)

·
®(±Ls)°

³
H2N
H2Ĺ

1¡®
¸ 1
1¡°

+°
±Le¤2L

l + ±Lse¤2L

(C12)

(from (A20) in the proof of Lemma 3),

where, from (24) and (A17) in the proof of Lemma 3),

±Le¤2L
l + ±Lse¤2L

=

1
s

(·
®°±LsT2

®TN
1¡®

³
H2N
H2L

1́¡®
¸ 1
1¡°

¡l

)
·
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³
H2N
H2L

1́¡®
¸ 1
1¡°

=

1
s

·
®°±LsT2

®TN
1¡®

³
H2N
H2Ĺ

1¡®
¸ 1
1¡°

¡(1¡°)(°°T2®TN
1¡®)

1
1¡°

(·
(1¡®)[±N (1¡s)]°

³
H2N
H2Ĺ

¡®
¸ 1
1¡°

¡

·
®(±Ls)°

³
H2N
H2Ĺ

1¡®
¸ 1
1¡°

)
·
®°±LsT2®TN1¡®

³
H2N
H2Ĺ

1¡®
¸ 1
1¡°

:

(C13)

Let B0´

·
(1¡®)[±N(1¡s)]°

³
H2N
H2Ĺ

¡®
¸ 1
1¡°

; B1´

·
®(±Ls)°

³
H2N
H2Ĺ

1¡®
¸ 1
1¡°

; and B2´

·
®°±LsT2

®TN
1¡®

³
H2N
H2Ĺ

1¡®
¸ 1
1¡°

:

By substituting (C13) into (C12), (1 ¡ ®)
³
H2N
H2L

¡́1 d
H2N
H2L
ds + °

±Le
¤

2L

l+±Lse
¤

2L

is proportional to

B2
1¡®
s

³
1¡°¡s
1¡s B0¡B1́ +°[®B0+(1¡®)B1]

h
1
sB2¡(1¡°)(°°T2

®TN
1¡®)

1
1¡°(B0¡B1)

i
= °

sB2

h
¡

1¡®
1¡sB0+ ®B0+(1¡®)B1

i
+(B0¡B1)

n
B2

1¡®
s ¡(1¡°)(°°T2

®TN
1¡®)

1
1¡° ° [®B0+(1¡®)B1]

o
= (°T2

®TN
1¡®)

1
1¡°

n
°B1

h
¡

³
1¡®
1¡s ¡1́ B0¡(1¡®)(B0¡B1)

i
+(B0¡B1)[°(1¡®)B1¡(1¡°)®B0]

o
= ¡(°T2

®TN
1¡®)

1
1¡° 1

1¡sB0[®(1¡°)(1¡s) (B0¡B1)+° (s ¡ ®)B1]; (C14)

where the last two equalities are from B2 = ±Ls(°T2
®TN

1¡®)
1

1¡° B1. Noting that the expression
inside the square bracket of (C14) is same as that of (A21) in the proof of Lemma 3 (ii), the proof
of the lemma applies.

C1The result is proved under the assumption e¤2L > 0: However, as shown in Lemma 4, when s is very large or
very small, e¤2L = 0 holds: In proving the next proposition that is based on this lemma, whether e¤2L > 0 or e¤2L = 0
depends on s is taken into account.

6



Hence,
dc2
ds

< 0 when s ¸ ® (also when s is close to 0 or s < ® and close to ®), and
dc2
ds

< 0 for

any s in this case when a(< e¤2L) is su¢ciently small or when TN , T2; ±N ; and ±L are su¢ciently

low that (1¡®)
³
H2N
H2L

¡́1 d
H2N
H2L
ds + °

±Le
¤

2L

l+±Lse
¤

2L

´ G · 0 for any s. Further, when TN , T2; ±N ; and ±L

are su¢ciently large that G > 0 and thus
dc2
ds

> 0 hold for not very small and not large s (Figure

A3) when a ¸ e¤2L,
dc2
ds

> 0 holds for such range of s when a < e¤2L as well, if a is su¢ciently large

that (1 ¡ ®)
³
H2N
H2L

¡́1 d
H2N
H2L
ds + ° ±La

l+±Lsa
= G ¡ °

³
±Le

¤

2L

l+±Lse
¤

2L

¡

±La
l+±Lsa

´
> 0.

[Case 4: the indi¤erence condition holds for a = ba 2 [e¤2L; e¤2N)]

(Results for a ¸ ba) From (30) and (A6) in Appendix A,
dc2
ds

for a ¸ ba is proportional to

¡

·
°
1¡s+®

³
H2N
H2L

¡́1 d
H2N
H2L
ds

¸
. In the following, it is proved that °

1¡s+®
³
H2N
H2Ĺ

¡1 d
H2N
H2L
ds > 0 and thus

dc2
ds

< 0 for a ¸ ba; when s ¸

®
®+(1¡®)° or when TN , T2; and ±N are su¢ciently low. It is also

proved that there exist ranges of s (· ®) satisfying °
1¡s+®

³
H2N
H2Ĺ

¡1 d
H2N
H2L
ds < 0 and thus

dc2
ds

> 0 for

a ¸ ba; when TN , T2; and ±N are su¢ciently high.
Totally di¤erentiating (A10) in Appendix A, one of the two equations determining ba and H2N

H2L
,

gives

¡

°
1¡s

(
1¡s°
s

·
(°±Ls)°®T2

®TN
1¡®

³
H2N
H2L

1́¡®
¸ 1
1¡°

+ (1+°)s¡1
s°

l
±Ls

+ba)ds

¡®

(
1¡®°
®

·
(°±Ls)°®T2

®TN
1¡®

³
H2N
H2Ĺ

1¡®
¸ 1
1¡°

+ l
±Ls

+ba)dH2NH2L
H2N
H2L

+ °ba
(
(1¡°)

·
(°±Ls)°®T2

®TN
1¡®

³
H2N
H2Ĺ

1¡®
¸ 1
1¡°

+ l
±Ls

¡

1¡°
° ba)dba=0;

(C15)

where (A10) is used to derive the term associated with ds and the expression associated with dba
is positive from (A10) and ba < e¤2N :

This equation can be expressed as

¡

(
1¡®°
®

·
(°±Ls)°®T2

®TN
1¡®

³
H2N
H2Ĺ

1¡®̧
1

1¡°

+ l
±Ls

+ba)
2664 °
1¡s

1¡s°
s

"
(°±Ls)

°®T2®TN
1¡®

µ
H2N
H2L

¶1¡®# 1
1¡°

+
(1+°)s¡1

s°
l
±Ls

+ba
1¡®°
®

"
(°±Ls)°®T2®TN 1¡®

µ
H2N
H2L

¶1¡®# 1
1¡°

+
l
±Ls

+ba
+®

³
H2N
H2Ĺ

¡1dH2NH2L

ds

3775
+°ba

(
(1¡°)

·
(°±Ls)°®T2

®TN
1¡®

³
H2N
H2Ĺ

1¡®
¸ 1
1¡°

+ l
±Ls

¡

1¡°
° ba)dba

ds
= 0: (C16)

Totally di¤erentiating (A11) in Appendix A, the other equation determining ba and H2N
H2L

, and
dividing the resulting equation by ds gives

7



Abadba
ds

=¡

8>>>>><>>>>>:

H2N
H2L

·
°
1¡s+°±L

(l+±Lse
¤

2L)
°¡1e¤2L(F (ba)¡F (e¤2L))+R e¤2L

0 (l+±Lsa)
°¡1adF (a)

(l+±Lse
¤

2L)
°(F (ba)¡F (e¤2L))+R e¤2L

0 (l+±Lsa)°dF (a)+(l)°F (0)

¸
+
d
H2N
H2L
ds

¡

°
e¤2N

H2N
H2L

(e¤2N )
°(1¡F (e¤2N ))

(e¤2N )
°(1¡F (e¤2N ))+

R e¤2Nba a°dF (a)

de¤2N
ds

+ °±Ls
l+±Lse

¤

2L

H2N
H2L

(l+±Lse
¤

2L)
°(F (ba)¡F (e¤2L))

(l+±Lse
¤

2L)
°(F (ba)¡F (e¤2L))+R e¤2L

0 (l+±Lsa)°dF (a)+(l)°F (0)

de¤2L
ds

9>>>>>=>>>>>;

=¡

H2N
H2L

26666666666666664

1
®

½
®

·
°
1¡s+°±L

(l+±Lse
¤

2L)
°¡1e¤2L(F (ba)¡F (e¤2L))+R e¤2L

0 (l+±Lsa)
°¡1adF (a)

(l+±Lse
¤

2L)
°(F (ba)¡F (e¤2L))+R e¤2L

0 (l+±Lsa)°dF (a)+(l)°F (0)

¸
+®

³
H2N
H2L

¡́1 d
H2N
H2L
ds

¾
+ °
1¡°

(e¤2N )
°(1¡F (e¤2N ))

(e¤2N )
°(1¡F (e¤2N ))+

R e¤2Nba a°dF (a)

·
°
1¡s + ®

³
H2N
H2L

¡́1 d
H2N
H2L
ds

¸
+ °
1¡°

1¡®
®

(l+±Lse
¤

2L)
°(F (ba)¡F (e¤2L))

(l+±Lse
¤

2L)
°(F (ba)¡F (e¤2L))+R e¤2L

0 (l+±Lsa)°dF (a)+(l)°F (0)

£

0BB@ ®
1¡®

1¡°
s

°
1¡°

"
®°±LsT2

®TN
1¡®

µ
H2N
H2L

¶1¡®# 1
1¡°

+l

"
®°±LsT2®TN 1¡®

µ
H2N
H2L

¶1¡®# 1
1¡°

+®
³
H2N
H2L

¡́1 d
H2N
H2L
ds

1CCA

37777777777777775
;

(C17)

where, Aba is a positive term, and, to derive the last equality, the following equations and (24) are
used.

de¤2N
ds

= ¡

"
°
1¡s + ®

³
H2N
H2L

¡́1dH2NH2L

ds

#
e¤2N
1¡° (from (21)), (C18)

de¤2L
ds

= 1
±Ls

Ã
1
s

(
°
1¡°

·
®°±LsT2

®TN
1¡®

³
H2N
H2L

1́¡®̧
1

1¡°

+l

)
+ 1¡®
1¡°

³
H2N
H2L

¡́1
·
®°±LsT2

®TN
1¡®

³
H2N
H2L

1́¡®̧
1

1¡°dH2NH2L

ds

!
(from (24)),

= 1
®±Ls

·
®°±LsT2

®TN
1¡®

³
H2N
H2L

1́¡®̧
1

1¡°
1¡®
1¡°

8>><>>: ®
1¡®

1¡°
s

°
1¡°

"
®°±LsT2

®TN
1¡®

µ
H2N
H2L

¶1¡®# 1
1¡°

+l

"
®°±LsT2®TN 1¡®

µ
H2N
H2L

¶1¡®# 1
1¡°

+®
³
H2N
H2L

¡́1 dH2NH2L

ds

9>>=>>; :

(C19)

From the equation that is obtained by substituting (C16) into (C17) and eliminating dba
ds ,

°
1¡s+

®
³
H2N
H2Ĺ

¡1 d
H2N
H2L
ds > 0 if °

1¡s+®
³
H2N
H2Ĺ

¡1 d
H2N
H2L
ds is higher than other similar expressions in the equation.

In the following, it is proved that this is the case when s ¸

®
®+(1¡®)° or when TN , T2; and ±N are

su¢ciently low.

°
1¡s + ®

³
H2N
H2Ĺ

¡1d
H2N
H2L
ds ¸

°
1¡s

1¡s°
s

"
(°±Ls)

°®T2®TN
1¡®

µ
H2N
H2L

¶1¡®# 1
1¡°

+
(1+°)s¡1

s°
l
±Ls

+ba
1¡®°
®

"
(°±Ls)°®T2®TN1¡®

µ
H2N
H2L

¶1¡®# 1
1¡°

+
l
±Ls

+ba
+®

³
H2N
H2Ĺ

¡1d
H2N
H2L
ds i¤

8



1¡s°
s

"
(°±Ls)

°®T2®TN
1¡®

µ
H2N
H2L

¶1¡®# 1
1¡°

+
(1+°)s¡1

s°
l
±Ls

+ba
1¡®°
®

"
(°±Ls)°®T2®TN 1¡®

µ
H2N
H2L

¶1¡®# 1
1¡°

+
l
±Ls

+ba
· 1

,

¡
1
s¡

1
®

¢·
(°±Ls)°®T2

®TN
1¡®

³
H2N
H2L

1́¡®
¸ 1
1¡°

¡

1¡s
s°

l
±Ls

· 0

, (®¡s)J¡®(1¡s)l · 0; where J ´

·
°±Ls®T2

®TN
1¡®

³
H2N
H2L

1́¡®
¸ 1
1¡°

(C20)

°
1¡s+®

³
H2N
H2Ĺ

¡1d
H2N
H2L
ds ¸ ®

·
°
1¡s+°±L

(l+±Lse
¤

2L)
°¡1e¤2L(F (ba)¡F (e¤2L))+R e¤2L

0 (l+±Lsa)
°¡1adF (a)

(l+±Lse
¤

2L)
°(F (ba)¡F (e¤2L))+R e¤2L

0 (l+±Lsa)°dF (a)+(l)°F (0)
+̧®

³
H2N
H2Ĺ

¡1d
H2N
H2L
ds

i¤

®

·
°
1¡s+°±L

(l+±Lse
¤

2L)
°¡1e¤2L(F (ba)¡F (e¤2L))+R e¤2L

0 (l+±Lsa)
°¡1adF (a)

(l+±Lse
¤

2L)
°(F (ba)¡F (e¤2L))+R e¤2L

0 (l+±Lsa)°dF (a)+(l)°F (0)

¸
·

°
1¡s

, ±L
(l+±Lse

¤

2L)
°¡1e¤2L(F (ba)¡F (e¤2L))+R e¤2L

0 (l+±Lsa)
°¡1adF (a)

(l+±Lse
¤

2L)
°(F (ba)¡F (e¤2L))+R e¤2L

0 (l+±Lsa)°dF (a)+(l)°F (0)
·

1¡®
®

1
1¡s

,(l+±Lse¤2L)
°¡1

£
®(1¡s)±Le¤2L¡(1¡®)(l+±Lse¤2L)

¤
(F (ba)¡F (e¤2L))

+

Z e¤2L

0
(l+±Lsa)°¡1

£
®(1¡s)±La¡(1¡®)(l+±Lsa)

¤
dF (a)¡(1¡®)(l)°F (0)·0

,(l+±Lse¤2L)°¡1
£
(®¡s)±Le¤2L¡(1¡®)l

¤
(F (ba)¡F (e¤2L))+

Z e¤2L

0
(l+±Lsa)°¡1

£
(®¡s)±La¡(1¡®)l

¤
dF (a)¡(1¡®)(l)°F (0)·0

,(l+±Lse¤2L)°¡1
1

s

©
(®¡s)J¡®(1¡s)l

ª
(F (ba)¡F (e¤2L))+

Z e¤2L

0
(l+±Lsa)°¡1

£
(®¡s)±La¡(1¡®)l

¤
dF (a)¡(1¡®)(l)°F (0)·0;

(C21)

where (24) is used to derive the last equation, and, as for the second term, (®¡s)±La¡(1¡®)l ·

(®¡s)1s (J¡l)¡(1¡®)l = 1
s

£
(®¡s)J¡®(1¡s)l

¤
from (24):

°
1¡s+®

³
H2N
H2L

¡́1 d
H2N
H2L
ds ¸

®
1¡®

1¡°
s

°
1¡°

"
®°±LsT2

®TN
1¡®

µ
H2N
H2L

¶1¡®# 1
1¡°

+l

"
®°±LsT2®TN 1¡®

µ
H2N
H2L

¶1¡®# 1
1¡°

+®
³
H2N
H2L

¡́1 d
H2N
H2L
ds i¤

®
1¡®

1¡°
s

°
1¡°

·
®°±LsT2

®TN
1¡®

³
H2N
H2L

´1¡®¸ 1
1¡°

+l·
®°±LsT2®TN 1¡®

³
H2N
H2L

´1¡®¸ 1
1¡°

·

°
1¡s

, °
³

®
1¡®

1
s¡

1
1¡s

´·
®°±LsT2

®TN
1¡®

³
H2N
H2L

´1¡®¸ 1
1¡°

+ ®
1¡®

1¡°
s l · 0

, °(®¡s)J + ®(1¡s)(1¡°)l · 0: (C22)

From (C20), (C21), and (C22), °
1¡s+®

³
H2N
H2Ĺ

¡1 d
H2N
H2L
ds is higher than the other expressions if (C22)

holds. Because e¤2L > 0 , J > l from (24), this is true if ° (® ¡ s) + ®(1 ¡ s)(1 ¡ °) · 0 , s ¸

®
®+(1¡®)° : Further, (C22) is true for s > ® when TN , T2; ±N and ±L are su¢ciently low from the
following lemma.
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Lemma C1 (i) T2
®TN

1¡®
³
H2N
H2L

1́¡®
increases with TN ; T2; and ±N : (ii) H2N

H2L
decreases with ±L:

Proof. (i) Suppose the contrary. Then, an increase in TN ; T2; or ±N lowers T2
®TN

1¡®
³
H2N
H2L

1́¡®
,

which implies that H2N
H2L

decreases. Then, ba must decrease, since (A10) in Appendix A can be
expressed as follows.

(1¡®)T2
®TN

1¡®
³
H2N
H2L

¡́®
(±N(1¡s)ba)°¡ba=(1¡°)

·
(°±Ls)°®T2

®TN
1¡®

³
H2N
H2L

1́¡®
¸ 1
1¡°

+
l

±Ls
: (C23)

Because a decrease in T2
®TN

1¡®
³
H2N
H2L

1́¡®
lowers e¤2L from (24) and a decrease in H2N

H2L
and an

increase in TN ; T2; or ±N raises e¤2N from (21), for (A11) to hold, ba must increase, a contradiction.

Therefore, T2
®TN

1¡®
³
H2N
H2L

1́¡®
increases with TN ; T2; and ±N :

(ii) The result holds because for given ba; an increase in ±L lowers H2N
H2L

satisfying (C23) (the

LHS of the equation increases with ±L) and H2N
H2L

satisfying (A11).

Therefore, °
1¡s+®

³
H2N
H2Ĺ

¡1 d
H2N
H2L
ds > 0 and thus

dc2
ds

< 0 for a ¸ ba when s ¸

®
®+(1¡®)° ; and if TN ,

T2; ±N and ±L are su¢ciently low, when s > ®. °(®¡s)J+®(1¡s)(1¡°)l · 0 when ±L is su¢ciently
low; because °(®¡s)J+®(1¡s)(1¡°)l = (®¡s) (±Lse¤2L+l)¡®(1¡s)l < (®¡s)(±Lse¤2N+l)¡®(1¡s)l;
where e¤2N increases with ±L from (21) and Lemma C1.

Similarly, °
1¡s+®

³
H2N
H2Ĺ

¡1 d
H2N
H2L
ds < 0 if °

1¡s+®
³
H2N
H2Ĺ

¡1 d
H2N
H2L
ds is smaller than other expressions in

the equation obtained by substituting (C16) into (C17), which is the case when (C21) holds with
">". Noting that e¤2L = 1

±Ls
(J ¡ l) from (24) and (C21) holds with ">" only if s < ®, the LHS

of (C21) increases with J , because the derivative of the LHS of the equation with respect to J is
proportional to ¡

(1¡°)
J

©
(®¡s)J¡®(1¡s)l

ª
+ (®¡s) > 0: Therefore, from Lemma C1, there exist

ranges of s (< ®) satisfying °
1¡s+®

³
H2N
H2Ĺ

¡1 d
H2N
H2L
ds < 0 and thus

dc2
ds

> 0 for a ¸ ba; when TN , T2;

and ±N are su¢ciently high.

(Results for a < e¤2L) From (A9) in Appendix A,
dc2
ds

for a < e¤2L is proportional to (1¡

®)
³
H2N
H2L

¡́1 d
H2N
H2L
ds +° ±La

l+±Lsa
: Since

d
H2N
H2L
ds < 0 from Lemma 6,

dc2
ds

<0 for any s in this case when a is

su¢ciently small.
For any a < e¤2L,

(1¡®)
³
H2N
H2L

¡́1 dH2NH2L

ds
+°

±La

l + ±Lsa
< (1¡®)

³
H2N
H2L

¡́1 dH2NH2L

ds
+°

±Le¤2L
l+±Lse¤2L

: (C24)

In the following, it is proved that (1¡®)
³
H2N
H2L

¡́1 d
H2N
H2L
ds +°

±Le
¤

2L

l+±Lse
¤

2L

< 0 and thus
dc2
ds

< 0, when

s ¸

1
2¡® or when TN , T2; ±N and ±L are su¢ciently low.

When s ¸ ® or when TN , T2; ±N and ±L are low enough that (®¡s)

·
°±Ls®T2

®TN
1¡®

³
H2N
H2Ĺ

1¡®
¸ 1
1¡°

¡
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®(1¡s)l < 0 holds (Lemma C1),C2 °
1¡s+®

³
H2N
H2Ĺ

¡1d
H2N
H2L
ds > °

1¡s

1¡s°
s

"
(°±Ls)

°®T2®TN
1¡®

µ
H2N
H2L

¶1¡®# 1
1¡°

+
(1+°)s¡1

s°
l
±Ls

+ba
1¡®°
®

"
(°±Ls)°®T2®TN1¡®

µ
H2N
H2L

¶1¡®# 1
1¡°

+
l
±Ls

+ba
+

®
³
H2N
H2Ĺ

¡1d
H2N
H2L
ds from (C20).

°
1¡s

1¡s°
s

"
(°±Ls)

°®T2®TN
1¡®

µ
H2N
H2L

¶1¡®# 1
1¡°

+
(1+°)s¡1

s°
l
±Ls

+ba
1¡®°
®

"
(°±Ls)°®T2®TN 1¡®

µ
H2N
H2L

¶1¡®# 1
1¡°

+
l
±Ls

+ba
>®

·
°
1¡s+°±L

(l+±Lse
¤

2L)
°¡1e¤2L(F (ba)¡F (e¤2L))+R e¤2L

0 (l+±Lsa)
°¡1adF (a)

(l+±Lse
¤

2L)
°(F (ba)¡F (e¤2L))+R e¤2L

0 (l+±Lsa)°dF (a)+(l)°F (0)

¸

holds too; because (J ´

·
°±Ls®T2

®TN
1¡®

³
H2N
H2Ĺ

1¡®
¸ 1
1¡°

)

°
1¡s

1¡s°
s

J
°±Ls

+
(1+°)s¡1

s°
l
±Ls

+ba
1¡®°
®

J
°±Ls

+
l
±Ls

+ba > ®

·
°

1 ¡ s
+°±L

(l+±Lse
¤

2L)
°¡1e¤2L(F (ba)¡F (e¤2L))+R e¤2L

0 (l+±Lsa)
°¡1adF (a)

(l+±Lse
¤

2L)
°(F (ba)¡F (e¤2L))+R e¤2L

0 (l+±Lsa)°dF (a)+(l)°F (0)

¸

,

1
1¡s

(1¡s°)
J

°±Ls
+
(1+°)s¡1

°
l
±Ls

+sba
1¡®°
®

J
°±Ls

+
l
±Ls

+ba > ®

·
s

1 ¡ s
+
(l+±Lse

¤

2L)
°¡1±Lse

¤

2L(F (ba)¡F (e¤2L))+R e¤2L
0 (l+±Lsa)

°¡1±LsadF (a)

(l+±Lse
¤

2L)
°(F (ba)¡F (e¤2L))+R e¤2L

0 (l+±Lsa)°dF (a)+(l)°F (0)

¸

(

1
1¡s

(1¡s°)
J

°±Ls
+
(1+°)s¡1

°
l
±Ls

+sba
1¡®°
®

J
°±Ls

+
l
±Ls

+ba ¸ ®
³
s
1¡s+

±Lse
¤

2L

l+±Lse
¤

2L

´
= ®

³
s
1¡s+

J¡l
J

´
(from (24))

,

1
1¡s

nh
(1¡s°) J

°±Ls
+ (1+°)s¡1

°
l
±Ls

+sbai
¡

h
(1¡®°) J

°±Ls
+® l

±Ls
+®baio

¸¡

(1¡®°) J
°±Ls

+® l
±Ls

+®ba
J l

, (ba¡e¤2L)
£
(®¡s)J ¡ ®(1¡s)l

¤
· 0 (from (24)). (C25)

Hence, either ®

·
°
1¡s+°±L

(l+±Lse
¤

2L)
°¡1e¤2L(F (ba)¡F (e¤2L))+R e¤2L

0 (l+±Lsa)
°¡1adF (a)

(l+±Lse
¤

2L)
°(F (ba)¡F (e¤2L))+R e¤2L

0 (l+±Lsa)°dF (a)+(l)°F (0)

¸
+ ®

³
H2N
H2Ĺ

¡1d
H2N
H2L
ds or

®
1¡®

1¡°
s

°
1¡°

"
®°±LsT2

®TN
1¡®

µ
H2N
H2L

¶1¡®# 1
1¡°

+l

"
®°±LsT2®TN 1¡®

µ
H2N
H2L

¶1¡®# 1
1¡°

+®
³
H2N
H2L

¡́1 d
H2N
H2L
ds is lowest among the terms of the

equation obtained by substituting (C16) into (C17). From the equation, the lowest term must be
negative.

If the latter is lowest, ®
1¡®

1¡°
s

°
1¡°

"
®°±LsT2

®TN
1¡®

µ
H2N
H2L

¶1¡®# 1
1¡°

+l

"
®°±LsT2®TN 1¡®

µ
H2N
H2L

¶1¡®# 1
1¡°

+®
³
H2N
H2L

¡́1 d
H2N
H2L
ds < 0. Thus,

(1 ¡ ®)
³
H2N
H2L

¡́1 dH2NH2L

ds
+ °

±Le¤2L
l + ±Lse¤2L

< ¡

1 ¡ °

s

°
1¡°

J+l

J +°
1
s

¡
J ¡ l

¢
J

= ¡

l
s

J
< 0:

C2The inequality holds when ±L is su¢ciently low, because for s < ®, (®¡s)
·
°±Ls®T2

®TN
1¡®

³
H2N
H2Ĺ

1¡®
¸ 1
1¡°

¡®(1¡

s)l = (®¡s) (±Lse
¤

2L + l) ¡ ®(1¡s)l < (®¡s)(±Lse
¤

2N + l) ¡ ®(1¡s)l; where e¤2N increases with ±L from (21) and
Lemma C1.
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Otherwise, ®

·
°
1¡s+°±L

(l+±Lse
¤

2L)
°¡1e¤2L(F (ba)¡F (e¤2L))+R e¤2L

0 (l+±Lsa)
°¡1adF (a)

(l+±Lse
¤

2L)
°(F (ba)¡F (e¤2L))+R e¤2L

0 (l+±Lsa)°dF (a)+(l)°F (0)

¸
+®

³
H2N
H2L

¡́1 d
H2N
H2L
ds < 0.

Thus,

(1¡®)
³
H2N
H2L

¡́1 dH2NH2L

ds
+°

±Le¤2L
l + ±Lse¤2L

< ¡(1¡®)

·
°
1¡s+°±L

(l+±Lse
¤

2L)
°¡1e¤2L(F (ba)¡F (e¤2L))+R e¤2L

0 (l+±Lsa)
°¡1adF (a)

(l+±Lse
¤

2L)
°(F (ba)¡F (e¤2L))+R e¤2L

0 (l+±Lsa)°dF (a)+(l)°F (0)

¸
+

°

s

J¡l

J

< ¡°
³
1¡®
1¡s ¡

1
s

´
¡

°

s

l

J

=
°

s(1¡s)J

©
[1¡(2¡®)s]J¡(1¡s)l

ª
;

which is negative when s ¸

1
2¡® or when TN , T2; ±N and ±L are su¢ciently low (Lemma C1).

Therefore, (1¡®)
³
H2N
H2L

¡́1 d
H2N
H2L
ds +°

±Le
¤

2L

l+±Lse
¤

2L

< 0 and thus
dc2
ds

< 0 for a < e¤2L when s ¸

1
2¡® or

when TN , T2; ±N and ±L are su¢ciently low.

(Results for a 2 [e¤2L;ba)) Finally, from (A12) in Appendix A,
dc2
ds

< 0 for a 2 [e¤2L;ba) if·
(1¡®)

³
H2N
H2L

¡́1 d
H2N
H2L
ds + °

s

¸
J
°¡

l
s < 0: The result can be proved following a similar step as the above

proof of
dc2
ds

< 0 for a < e¤2L: In particular, when ®
1¡®

1¡°
s

°
1¡°

"
®°±LsT2

®TN
1¡®

µ
H2N
H2L

¶1¡®# 1
1¡°

+l

"
®°±LsT2®TN1¡®

µ
H2N
H2L

¶1¡®# 1
1¡°

+

®
³
H2N
H2L

¡́1 d
H2N
H2L
ds < 0,

(1 ¡ ®)
³
H2N
H2L

¡́1 dH2NH2L

ds
+

°

s
< ¡

1 ¡ °

s

°
1¡°J + l

J
+

°

s

= ¡

1 ¡ °

s

l

J
< 0;

and when ®

·
°
1¡s+°±L

(l+±Lse
¤

2L)
°¡1e¤2L(F (ba)¡F (e¤2L))+R e¤2L

0 (l+±Lsa)
°¡1adF (a)

(l+±Lse
¤

2L)
°(F (ba)¡F (e¤2L))+R e¤2L

0 (l+±Lsa)°dF (a)+(l)°F (0)

¸
+®

³
H2N
H2L

¡́1 d
H2N
H2L
ds < 0,"

(1¡®)
³
H2N
H2Ĺ

¡1dH2NH2L

ds
+

°

s

#
J

°
¡

l

s
<

½
¡(1¡®)

·
1
1¡s+±L

(l+±Lse
¤

2L)
°¡1e¤2L(F (ba)¡F (e¤2L))+R e¤2L

0 (l+±Lsa)
°¡1adF (a)

(l+±Lse
¤

2L)
°(F (ba)¡F (e¤2L))+R e¤2L

0 (l+±Lsa)°dF (a)+(l)°F (0)

¸
+

1

s

¾
J¡

l

s

<
1

s

½
1

1¡s
[¡(2¡®)s+1]J¡l

¾
; (C26)

which is negative when s ¸

1
2¡® or when TN , T2; ±N ; ±L are su¢ciently low from Lemma C1.

[Case 5: the indi¤erence condition holds for a = ea < e¤2L]

(Results for a ¸ ea) From (30) and (A6) in Appendix A,
dc2
ds

for a ¸ ea is proportional to

¡

·
°
1¡s+®

³
H2N
H2L

¡́1 d
H2N
H2L
ds

¸
. In the following, it is proved that °

1¡s+®
³
H2N
H2L

¡́1 d
H2N
H2L
ds > 0 and thus

dc2
ds

< 0 holds for a ¸ ea, when s ¸ ® or when TN , T2; ±N and ±L are su¢ciently small, and
dc2
ds

> 0

holds for not large s (< ®) when TN , T2; and ±N are su¢ciently large.
In order to prove the result, the following lemma is used.
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Lemma C2 (i) H2N
H2L

and ea increase with TN ; T2; and ±N : (ii) H2N
H2L

decreases with ±L:

Proof. (i) Suppose the contrary. Then, an increase in TN ; T2; or ±N lowers H2N
H2L

, which implies
that ea decreases from (A13) in Appendix A. Because an increase in TN ; T2; or ±N together with
a decrease in H2N

H2L
raises e¤2N from (21), for (A14) in the appendix to hold, ea must increase, a

contradiction. Therefore, H2NH2L
and ea increase with TN ; T2; and ±N :

(ii) The result holds because for given ea; an increase in ±L lowers both H2N
H2L

satisfying (A13)

and H2N
H2L

satisfying (A14).

Totally di¤erentiating (A13), one of the two equations determining ea and H2N
H2L

, gives

° lea(l+±Lsea) H2NH2L
dea = °

1¡s
l+±Lea
l+±Lsea H2NH2L

ds + dH2NH2L
: (C27)

Totally di¤erentiating (A14), the other equation determining ea and H2N
H2L

, gives

°

µ
1
1¡s+

1
s

R ea
0 (l+±Lsa)

°¡1±LsadF (a)R ea
0 (l+±Lsa)

°dF (a)+(l)°F (0)

¶
H2N
H2L

ds + dH2NH2L
¡

[±N (1¡s)]
°°e¤2N

°¡1(1¡F (e¤2N ))R ea
0 (l+±Lsa)

°dF (a)+(l)°F (0)
de¤2N

+
[±N (1¡s)]

°

½hR ea
0 (l+±Lsa)

°dF (a)
iea°+·

e¤2N
°(1¡F (e¤2N ))+

R e¤2Nea a°dF (a)̧ (l+±Lsea)°¾dF (ea)hR ea
0 (l+±Lsa)

°dF (a)+(l)°F (0)
i2 dea = 0; (C28)

where, from (C10),
de¤2N = ¡

·
°
1¡sds + ®

³
H2N
H2L

¡́1
dH2NH2L

¸
e¤2N
1¡° : (C29)

If the …rst and third equations are substituted into the second one and divided by ds, the result-

ing equation consists of the term associated with °
1¡s

l+±Lea
l+±Lsea H2NH2L

+
d
H2N
H2L
ds = °

³
1
1¡s+

±Lea
l+±Lseá H2N

H2L
+

d
H2N
H2L
ds ; the one associated with °

µ
1
1¡s+

R ea
0 (l+±Lsa)

°¡1±LadF (a)R ea
0 (l+±Lsa)

°dF (a)+(l)°F (0)

¶
H2N
H2L

+
d
H2N
H2L
ds ; and the one associated

with °
1¡s + ®

³
H2N
H2L

¡́1 d
H2N
H2L
ds = ®

³
H2N
H2L

¡́1
Ã
1
®

°
1¡s

H2N
H2L

+
d
H2N
H2L
ds

!
: The …rst expression is greater than

the second one becauseea
l+±Lsea>

R ea
0 (l+±Lsa)

°¡1adF (a)R ea
0 (l+±Lsa)

°dF (a)+(l)°F (0)
,

Z ea
0

(l+±Lsa)°¡1(ea¡a)ldF (a)+(l)°F (0)ea > 0:

Hence, when 1
®

°
1¡s

H2N
H2L

¸

°
1¡s

l+±Lea
l+±Lsea H2NH2L

, (® ¡ s)±Lea · (1 ¡ ®)l; °
1¡s + ®

³
H2N
H2L

¡́1 d
H2N
H2L
ds > 0.

(® ¡ s)±Lea · (1 ¡ ®)l holds when s ¸ ® or when

(® ¡ s)±Le¤2L · (1 ¡ ®)l

, (®¡s)J ¡ ®(1 ¡ s)l · 0 (from (24)), where J ´

·
°±Ls®T2

®TN
1¡®

³
H2N
H2L

1́¡®
¸ 1
1¡°

;

which is true when TN , T2; and ±N are su¢ciently small from Lemma C2.
(® ¡ s)±Lea · (1 ¡ ®)l holds when ±L is su¢ciently small as well, because it is true if (® ¡

s)±Le¤2N · (1 ¡ ®)l, where e¤2N decreases with H2N
H2L

and H2N
H2L

decreases with ±L from Lemma C2.

From the above analysis, when 1
1¡s+

R ea
0 (l+±Lsa)

°¡1±LadF (a)R ea
0 (l+±Lsa)

°dF (a)+(l)°F (0)
¸

1
®

1
1¡s ,

R ea
0 (l+±Lsa)

°¡1±LadF (a)R ea
0 (l+±Lsa)

°dF (a)+(l)°F (0)
¸

1¡®
®

1
1¡s ;

°
1¡s + ®

³
H2N
H2L

¡́1 d
H2N
H2L
ds < 0 and thus

dc2
ds

> 0. Because
R ea
0 (l+±Lsa)

°¡1±LadF (a)R ea
0 (l+±Lsa)

°dF (a)+(l)°F (0)
increases

with ea from

13



hR ea
0(l+±Lsa)°dF (a)+(l)°F (0)

i
(l+±Lsea)°¡1±LeadF (ea)¡

R ea
0(l+±Lsa)°¡1±LadF (a)(l+±Lsea)°dF (ea)

= (l+±Lsea)°¡1dF (ea)±L
nhR ea

0(l+±Lsa)°dF (a)+(l)°F (0)
iea¡

hR ea
0(l+±Lsa)°¡1adF (a)

i
(l+±Lsea)

o
>0;

the inequality holds when TN , T2; and ±N are su¢ciently large from Lemma C2. The inequality and

thus dc2
ds > 0 could hold only for s < ®, since

R ea
0 (l+±Lsa)

°¡1±LadF (a)R ea
0 (l+±Lsa)

°dF (a)+(l)°F (0)
= 1

s

R ea
0 (l+±Lsa)

°¡1±LsadF (a)R ea
0 (l+±Lsa)

°dF (a)+(l)°F (0)
<

1
s .

(Results for a < ea) From (A9) in Appendix A,
dc2
ds

for a < ea is proportional to (1 ¡

®)
³
H2N
H2L

¡́1 d
H2N
H2L
ds +° ±La

l+±Lsa
. Since

d
H2N
H2L
ds < 0 from Lemma 6,

dc2
ds

< 0 for any s in this case when

a is su¢ciently small.

From the above analysis, either °

µ
1
1¡s+

R ea
0 (l+±Lsa)

°¡1±LadF (a)R ea
0 (l+±Lsa)

°dF (a)+(l)°F (0)

¶
H2N
H2L

+
d
H2N
H2L
ds or 1

®
°
1¡s

H2N
H2L

+
d
H2N
H2L
ds

is the smallest among the similar expressions in (C27), (C28), and (C29) and thus is negative. This

implies °
1¡s

H2N
H2L

+
d
H2N
H2L
ds < 0: Hence, for any a < ea;

(1 ¡ ®)
³
H2N
H2L

¡́1 dH2NH2L

ds
+ °

±La

l + ±Lsa
< °

µ
¡

1 ¡ ®

1 ¡ s
+

±La

l + ±Lsa

¶
= °

(1¡s)(l+±Lsa)

£
¡(1¡®)(l+±Lsa)+(1¡s)±La

¤
= °

(1¡s)(l+±Lsa)

©
[¡(2¡®)s+1] ±La¡(1¡®)l

ª
;

which is negative when s ¸

1
2¡® : When s < 1

2¡® ;

(1 ¡ ®)
³
H2N
H2L

¡́1 dH2NH2L

ds
+ °

±La

l + ±Lsa
< °

(1¡s)(l+±Lsa)

©
[¡(2¡®)s+1] ±La ¡ (1¡®)l

ª
< °

(1¡s)(l+±Lsa)

©
[¡(2¡®)s+1] ±Le¤2L ¡ (1¡®)l

ª
= °

s(1¡s)(l+±Lsa)

©
[¡(2¡®)s+1]J ¡ (1¡s)l

ª
(from (24)),

which is negative when TN , T2; and ±N are su¢ciently low from Lemma C2. (1¡®)
³
H2N
H2L

¡́1 d
H2N
H2L
ds +

° ±La
l+±Lsa

< 0 when ±L is su¢ciently small as well, because [¡(2¡®)s+1]±La¡(1¡®)l< [¡(2¡®)s+1]±Le¤2N¡

(1¡®)l, where e¤2N decreases with H2N
H2L

and H2N
H2L

decreases with ±L from Lemma C2.

Proof of Proposition 4. Only the proof of the result on the consumption is presented, because
net earnings in unit of the …nal good equal consumption minus wealth. (i) From Lemma 7 (i),
consumption of any (group 2) individual decreases with s when e¤2L = 0: From (ii) of the lemma,
if TN , T2; ±N ; and ±L are low, it decreases with s when e¤2L > 0 too. Hence, from Lemma 4 and
Figure 4, consumption of any individual decreases with s for any s, if the proportion of those with
adequate wealth is low enough that Case 2 is realized for any s or if TN , T2; ±N ; and ±L are low.

(ii) From Lemmas 4 and 7, consumption of any individual decreases with s for small s (when
s is small enough that e¤2L = 0 holds) and large s:

(a) From Lemma 7 (ii)(b), when TN , T2; ±N ; and ±L (in Case 3) are su¢ciently high, there
exist ranges of s over which consumption of those with relatively large wealth increases with s, if
such ranges of s are e¤ective, i.e., if e¤2L > 0 is true.
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[Case 3 for intermediate s] When Case 3 is realized, as explained in Appendix A, H2NH2L
is

determined by (29) and c2 for those with a ¸ e¤2L is determined by (30) as in the unconstrained case.

Hence, Proposition 1 (ii) applies and thus ranges of s over which
dc2
ds

> 0 holds are e¤ective for such

individuals when TN , T2; ±N ; and ±L are su¢ciently high. As for those with a < e¤2L; from the proof

of Lemma 7 (ii),
dc2
ds

> 0 for some ranges of s, if TN , T2; ±N ; and ±L are su¢ciently high, e¤2L > 0

is true, and a is su¢ciently large that (1 ¡ ®)
³
H2N
H2L

¡́1 d
H2N
H2L
ds + ° a

l+sa
= G ¡ °

³
e¤2L
l+se¤2L

¡

a
l+sa

´
> 0,

where from (C14) in the proof of the lemma, the sign of G ´ (1¡®)
³
H2N
H2L

¡́1 d
H2N
H2L
ds +°

e¤2L
l+se¤2L

is same

as that of (A21) in the proof of Lemma 3 (ii). Hence, the proofs of the lemma and Proposition 1

(ii) apply and ranges of s over which
dc2
ds

> 0 holds are e¤ective when TN , T2; ±N ; and ±L are high

enough that the supremum of s satisfying G > 0, smax, is su¢ciently greater than s.
When Case 3 is realized for intermediate s, c2 of individuals with a ¸ e¤2L when e¤2L > 0 and

thus s is intermediate is given by (30), while their consumption at s = 0; at which Case 1 or 2 is
realized (Figure 5), equals or is smaller than the value of (30).C3 Hence, c2 when s is intermediate

is greater than c2 at s = 0 if (1¡s)°
³
H2N
H2L

jintermediate ś
¡®

>
³
H2N
H2L

js=0́

¡®
:

When Case 1 is realized at s = 0; Proposition 1 (ii) applies and c2 is highest at intermediate s, if
TN , T2; ±N ; and ±L are su¢ciently high. When Case 2 is realized at s = 0; unlike the unconstrained
case, H2NH2L

and ba0 at s = 0 are determined by (A4) and (A5) in Appendix A, while H2N
H2L

when s is
intermediate is determined by (29) as in the unconstrained case, which can be expressed as

(°°T2
®TN

1¡®)
1

1¡°

(·
(1¡®)[±N (1¡s)]°

³
H2N
H2L

jintermediate ś
¡®̧

1
1¡°

¡

·
®(±Ls)°

³
H2N
H2L

jintermediate ś
1¡®̧

1
1¡°

)
=

1

1¡°

l

±Ls
:

(C30)

By substituting (1¡s)°
³
H2N
H2L

jintermediate ś
¡®

>
³
H2N
H2L

js=0́

¡®
into the above equation;

(°°)
1

1¡°

Ã·
T2
®TN

1¡®
³
H2N
H2L

js=0́

¡®
(1¡®)±°N

¸ 1
1¡°

¡

·
T2
®TN

1¡®
³
H2N
H2L

js=0́

1¡®
®(±Ls)°(1¡s)

°
®

¸ 1
1¡°

!
<

1

1¡°

l

±Ls
:

(C31)
This condition holds if the LHS of the equation is negative, i.e.,·³

H2N
H2L

js=0́

¡1
(1¡®)±°N

¸ 1
1¡°

¡

h
®(±Ls)°(1¡s)

°
®

i 1
1¡°

<0: (C32)

Because H2N
H2L

js=0 does not depend on ±L from (A4) and (A5), the above condition clearly holds

when ±L is su¢ciently large. It can be proved that H2N
H2L

js=0 increases with TN ; T2; and ±N from
(A4) and (A5). Hence, the condition holds when TN and T2 are su¢ciently large.

The condition holds when ±N is su¢ciently large if ba0 increases with ±N ; because
³
H2N
H2L

js=0́

¡1
±°N

must decrease with ±N from the following equation, which is obtained from (A4) at s = 0.
(±Nba0)°
H2N
H2L

js=0

¡

1

1¡®

1

(TN )1¡®(T2)®
³
H2N
H2L

js=0́

1¡®ba0= ®

1¡®
(l)

°
(C33)

C3When Case 2 is realized, c2 at s = 0 could be given by either (30) (when a ¸ e¤2N), (A6) (when a 2 [ba0; e¤2N)),
or (A7) (when a < ba0), because e¤2L when s is intermediate could be smaller than e¤2N or ba0 at s = 0: Because
wNh

¤

2N ¡ P2e
¤

2N > wNh2N¡P2a for a 2 [ba0; e¤2N ) and wNh¤2N ¡ P2e
¤

2N > w2Lh2L for a < ba0 (note e¤2L = 0); c2 of
(30) is greater than that of (A6) or (A7).
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If ba0 decreases with ±N ;the condition holds when ±N is su¢ciently large, because
³
H2N
H2L

js=0́

¡1
±°N

must decrease with ±N from the following equation, which is obtained from (A5) at s = 0.

1=

³
H2N
H2L

js=0́

¡1
±°N

h
(e¤2N)°(1¡F (e¤2N))+

R e¤2Nba0 (a)°dF (a)
i

(l)°F (ba0) ; (C34)

where e¤2N increases with
³
H2N
H2L

js=0́

¡1
±°N

³
H2N
H2L

js=0́

1¡®
from (21).

Hence, when Case 2 is realized at s = 0; c2 is highest at intermediate s, when TN , T2; ±N ; and
±L are su¢ciently high.

[Case 4 for intermediate s] When Case 4 is realized for intermediate s, from the proof
of Lemma 7 (ii), c2 of those with a ¸ ba increases with s for some ranges of s(< ®), if TN ,
T2; and ±N are su¢ciently high that (C21) in the proof holds with ">", which is the case only

when (®¡s)J ¡®(1¡s)l > 0; where J ´

·
°s®T2

®TN
1¡®

³
H2N
H2L

1́¡®
¸ 1
1¡°

, and e¤2L > 0 is true: Since

e¤2L > 0 , J > l from the proof of Lemma 1, e¤2L > 0 is true when (®¡s)J¡®(1¡s)l > 0:
When Case 4 is realized for intermediate s, from Appendix A, c2 for those with a ¸ e¤2N when

s is intermediate is determined by (30), while their consumption at s = 0; at which Case 1 or 2
is realized (Figure 5), equals or is smaller than the value of (30) (footnote C3). Hence, c2 when s

is intermediate is greater than c2 at s = 0 if (1¡s)°
³
H2N
H2L

jintermediate ś
¡®

>
³
H2N
H2L

js=0́

¡®
: Given s

and other parameters, H2NH2L
jintermediate s in Case 4 is smaller than the one in Case 3 from Lemmas

4 and 5, where the proportion of those with adequate wealth for education is higher in Case 3.
Similarly, given s and other parameters, H2NH2L

js=0 in Case 2 when the distribution of wealth F (a)

is that of Case 4 is smaller than when F (a) is that of Case 3 and
³
H2N
H2L

js=0́

¡®
in Case 1. Thus,

(1¡s)°
³
H2N
H2L

jintermediate ś
¡®

>
³
H2N
H2L

js=0́

¡®
is true when Case 4 is realized for intermediate s, if

(1¡s)°
³
H2N
H2L

jintermediate ś
¡®

in Case 3 is greater than
³
H2N
H2L

js=0́

¡®
in Case 2 when F (a) is that of

Case 4. From the proof of Case 3 above, this is true when TN , T2; ±N ; and ±L are high enough.
From Appendix A, c2 for those with a 2 [ba; e¤2N) when s is intermediate is determined by

(A12), which equals (30) at a = e¤2N : Hence, when TN , T2; ±N ; and ±L are su¢ciently high that c2
of those with a = e¤2N when e¤2L > 0 is highest at intermediate s; it is also true for su¢ciently large
a 2 [ba; e¤2N ).

[Case 5 for intermediate s] When Case 5 is realized for intermediate s, from the proof of
Lemma 7 (ii), c2 of those with a ¸ ea increases with s for some ranges of s(< ®), if TN , T2; and ±N are

su¢ciently high that 1s

R ea
0 (l+±Lsa)

°¡1±LsadF (a)R ea
0 (l+±Lsa)

°dF (a)+(l)°F (0)
¸

1¡®
®

1
1¡s : Because ea

l+±Lsea > 1
s

R ea
0 (l+±Lsa)

°¡1±LsadF (a)R ea
0 (l+±Lsa)

°dF (a)+(l)°F (0)

from the proof of Lemma 7 (ii), ea
l+±Lsea > 1¡®

®
1
1¡s holds. Since e¤2L > ea; this implies e¤2L

l+±Lse
¤

2L

>

1¡®
®

1
1¡s and thus e¤2L > 0 is true.
When Case 5 is realized for intermediate s, from Appendix A, c2 for those with a ¸ e¤2N when

s is intermediate is determined by (30), while their consumption at s = 0; at which Case 2 is
realized (Figure 5), equals or is smaller than the value of (30) (footnote C3). Hence, c2 when s is

intermediate is greater than c2 at s = 0 if (1¡s)°
³
H2N
H2L

jintermediate ś
¡®

>
³
H2N
H2L

js=0́

¡®
: The rest of

the proof is similar to the case in which Case 4 is realized for intermeidate s.
From Appendix A, c2 for those with a 2 [ea; e¤2N) when s is intermediate is determined by (A12),

which equals (30) at a = e¤2N : Hence, when TN , T2; ±N ; and ±L are su¢ciently high that c2 of those
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Figure C1: Relationship between s and dc2
ds

1
c2

when a < e¤2L for large a and small a

Figure C2: Relationship between s and c2 when a < e¤2L for large a and small a

with a = e¤2N is highest at intermediate s; it is also true for su¢ciently large a 2 [ea; e¤2N).
[s maximizing c2 of local sector workers] When c2 is maximized at intermediate s, s

maximizing c2 of national sector workers does not depend on a from (30) and (A6) in Appendix
A, and s maximizing c2 of local sector workers when a ¸ e¤2L does not depend on a from (A12) in
Appendix A. By contrast, c2 of local sector workers when a < e¤2L; which is realized in Cases 3¡5,

equals ®T2
®TN

1¡®
³
H2N
H2L

1́¡®
(l + ±Lsa)° from (A9). The derivative of consumption with respect

to s equals
·
(1¡®)

³
H2N
H2L

¡́1 d
H2N
H2L
ds +° ±La

l+±Lsa̧
c2; where

d
H2N
H2L
ds < 0 from Lemma 6. Thus, given s,

(1¡®)
³
H2N
H2L

¡́1 d
H2N
H2L
ds +° ±La

l+±Lsa
increases with a; which implies that s maximizing c2 locally increases

with a: Figure C1 illustrates the relationship between s and
dc2
ds

1

c2
for small a and large a. In this

example, there are two values of s maximizing c2 locally, denoted by small circles, both of which
are higher when a is higher. Further, it cannot be the case that c2 when a is large is maximized
at the lowest of the two local maximizers and c2 when a is small is maximized at the highest of
the two local maximizers, which implies that s maximizing globally c2 when a < e¤2L also increases
with a: The reason is that the ratio of c2 when a is large to c2 when a is small increases with s from
(A9). The following example would help understand this. Figure C2 illustrates the relationship
between s and c2 for two values of a. In the …gure, because the ratio increases with s; when a is
small, c2 is highest at the lowest of the two values of s maximizing c2 locally, while when a is large,
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Figure C3: s maximizing c2 of local sector workers

c2 is highest at the highest of the two local maximizers:
The above argument is incomplete because for given a; whether a < e¤2L or a ¸ e¤2L depends on

s: Figure C3 illustrates the relationship between s and e¤2L. (As in the …gure, it cannot be ruled
out the possibility that the relationship is non-monotonic and thus there exist multiple values of s
maximizing e¤2L locally.) In the region below the e¤2L pro…le, a < e¤2L and thus e = a hold, and in
the region on or above the pro…le, a ¸ e¤2L and thus e = e¤2L hold. In the …gure, s maximizing c2 of
local sector workers when a ¸ e¤2L is denoted sD, which is smaller than s maximizing e¤2L; s¤, from
(24) and (A12). The segment CD of the thick dotted line passing through point D is the locus of
s maximizing c2 when a 2 [aC ; aD): When a < aC , c2 is maximized at s = 0: It is now proved that,
for given a; s maximizing c2 of local sector workers is s on the thick dotted line: This is obvious
when a < aD and a ¸ a¤: When a 2 [aD; a¤); s maximizing c2 is sC because for given s, c2 when
a ¸ e¤2L is higher than c2 when a < e¤2L, and c2 when a ¸ e¤2L is highest at s = sC : Therefore, s
maximizing c2 of local sector workers increases with a when a 2 [aC ; aD):

(b) In Cases 1 and 2, c2 decreases with s from Lemma 7 (i), and in Case 5, when a is su¢ciently
low, c2 decreases with s from Lemma 7 (ii)(b). As for Cases 3 and 4, the proof of Lemma 7 (ii)(b)
is valid as long as e¤2L > 0, which is not true when s is very high or very low, as shown in Lemma
4. Here, the result is proved by taking into account how s a¤ects whether e¤2L > 0 or e¤2L = 0.

[Case 3] As for Case 3, the proof of Lemma 7 shows that c2 for a < e¤2L decreases with s when
a is su¢ciently small. Because e¤2L = 0 when s ¸ s or s · s from Lemma 4 (see Figure 5), for any
positive a; a ¸ e¤2L holds when e¤2L > 0 and s is close to s or s. Hence, it must be proved that c2
for a ¸ e¤2L when e¤2L > 0 and s is close to s or s decreases with s.

The proof of Lemma 7 shows that c2 for a ¸ e¤2L decreases with s for s ¸ ®: From Lemma 1,
s > 1 ¡ °(1 ¡ ®): Because ® < 1 ¡ °(1 ¡ ®); the consumption decreases with s for any s 2 [®; s):

From (A23) in the proof of Lemma 3, when s < ®,
dc2
ds

< 0 i¤

(°°T2
®TN

1¡®)
1

1¡°[(1¡®)±°N ]
1¡®
1¡°

µ
(®±L)

°
1¡°

1¡°

¶®
°

s
1+® °

1¡° (1¡s)(1¡®)
°

1¡°
¡®(®¡s)

f®¡[°(1¡®)+®]sg1¡®
<

l

±L(1¡°)

, °°T2
®TN

1¡®[(1¡®)±°N ]1¡®
h
(®±L)

°

(1¡°)1¡°

i®
[°(1 ¡ °)]1¡°

"
s
1+® °

1¡° (1¡s)(1¡®)
°

1¡°
¡®(®¡s)

f®¡[°(1¡®)+®]sg1¡®

#1¡°
<(

l

±L
)1¡°

, (±N)°(1¡®)(±L)1¡°(1¡®)°(1¡°)(1¡°)(1¡®)(®T1)
®[(1¡®)TN ]1¡®s1¡°(1¡®)

(1¡s)°¡®(®¡s)1¡°

®®(1¡°)f®¡[°(1¡®)+®]sg(1¡®)(1¡°)
<(l)1¡°:

(C35)
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From (A15) in the proof of Lemma 1, e¤2L > 0 i¤

(±N)°(1¡®)(±L)1¡°(1¡®)°(1¡°)(1¡°)(1¡®)(®T1)
®[(1¡®)TN ]1¡®s1¡°(1¡®)(1¡s)°(1¡®) > (l)1¡° : (C36)

The LHS of (C35) equals that of (C36) times
h

(1¡s)¡®(®¡s)

®®f®¡[°(1¡®)+®]sg(1¡®)

i1¡°
: (1¡s)¡®(®¡s)

®®f®¡[°(1¡®)+®]sg(1¡®)

decreases with s for s < ® because
®

1¡s
¡

1

®¡s
+

(1¡®) [°(1¡®)+®]

®¡[°(1¡®)+®]s

= (1¡®)

½
¡(1+®¡s)

(1¡s)(®¡s)
+

[°(1¡®)+®]

®¡[°(1¡®)+®]s

¾
= (1 ¡ ®)

¡(1 + ® ¡ s)f®¡[°(1¡®)+®]sg + (1 ¡ s)(®¡s) [°(1¡®)+®]

(1 ¡ s)(®¡s)f®¡[°(1¡®)+®]sg

= (1¡®)®
¡(1¡s)+°(1¡®)

(1¡s)(®¡s)f®¡[°(1¡®)+®]sg
< 0:

Further, (1¡s)¡®(®¡s)

®®f®¡[°(1¡®)+®]sg(1¡®)
= 1 at s = 0. Hence, (1¡s)¡®(®¡s)

®®f®¡[°(1¡®)+®]sg(1¡®)
< 1 for s 2 (0; ®).

This implies that when e¤2L > 0 and s is close to s;
dc2
ds

< 0:

[Case 4] In Case 4 too, the proof of Lemma 7 shows that c2 for a < e¤2L decreases with s when
a is su¢ciently small. Because e¤2L = 0 when s is very low or very high from Lemma 4 (Figure 5),
for any positive a; a ¸ e¤2L holds when e¤2L > 0 and s is close to the threshold s below or above
which e¤2L = 0. Hence, it must be proved that c2 for a 2 [e¤2L;ba) when e¤2L > 0 and s is close to the
threshold s decreases with s.

From the proof of Lemma 7,
dc2
ds

< 0 for a 2 [e¤2L;ba) when s ¸

1
2¡® : When s < 1

2¡® ; from (C26)

in the proof of the lemma,
dc2
ds

< 0 if 1
1¡s [¡(2¡®)s+1]J¡l · 0: When e¤2L ! 0 , J ! l (from

the proof of Lemma 1),
dc2
ds

< 0 because 1
1¡s [¡(2¡®)s+1]J¡l !

[¡(1¡®)s+1¡s]¡(1¡s)
1¡s l < 0: Hence,

dc2
ds

< 0 for a 2 [e¤2L;ba) when e¤2L > 0 and s is close to the threshold s:

Proof of Proposition 5. (i) (a) If the proportion of individuals with adequate wealth is very
low, from Lemma 4 (ii)(d) (see Figure 5), e¤2L = 0 and thus h2L = (l)° hold for any s. (b)
Otherwise, from Lemma 4 (Figure 5), e¤2L = 0 and thus h2L = (l)° hold when s is very low or very
high, which implies that h2L is highest at intermediate s.

The last part of the result is proved as follows. Figure C4 illustrates the relationship between
s and e¤2L. (As in the …gure, it cannot be ruled out the possibility that the relationship is non-
monotonic and thus there exist multiple values of s maximizing e¤2L locally.) In the region below
the e¤2L pro…le, a < e¤2L and thus e = a hold, and in the region on or above the pro…le, a ¸ e¤2L and
thus e = e¤2L hold. Because h2L = (l + ±Lse)° when a < e¤2L increases with s from e = a; for each
a such that a < e¤2L holds for some s, s that maximizes h2L when a · e¤2L is on a segment of the
e¤2L pro…le represented by a thick solid line. By contrast, h2L when a > e¤2L increases (decreases)

with s when
d(se¤2L)

ds
/

1

s
+

de¤2L
ds

>(<)0: Hence, s that maximizes h2L when a > e¤2L must satisfy

de¤2L
ds

< 0 and thus is on the same thick solid line. Suppose, without loss of generality, that such

s is sE in the …gure. Then, if an individual has a ¸ aE ; her h2L is maximized at s = sE; while if
a < aE; s maximizing h2L is on a portion of the thick solid line below the wealth level and thus
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Figure C4: Relationship between s and e¤2L

Figure C5: Relationship between s and e¤2N
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s > sE. As a decreases, such portion of the solid line shortens and thus s maximizing h2L weakly
increases.

(ii) Note that e¤2N is proportional to
·
(1¡s)°

³
H2N
H2L

¡́®̧
1

1¡°

from (21) and c2 when it is given by

(30) or (A6) in Appendix A—c2 for any a in Case 1, c2 for a ¸ ba0 in Case 2, c2 for a ¸ e¤2L in Case

3, c2 for a ¸ ba in Case 4, and c2 for a ¸ ea in Case 5—is a linear function of
·
(1¡s)°

³
H2N
H2L

¡́®̧
1

1¡°

(when c2 is given by (30)) or of (1¡s)°
³
H2N
H2L

¡́®
(when c2 is given by (A6)): Hence, the result on c2

of Lemma 7 and Proposition 4 can be used to prove the result.
(a) Because c2 decreases with s for any a when TN , T2; ±N ; and ±L are small or when the

proportion of individuals with adequate wealth is very low from Proposition 4 (i), e¤2N decreases
with s under such conditions. Since h2N = [±N (1¡s)e¤2N ]° for a ¸ e¤2N and h2N = [±N(1¡s)a]° for
a < e¤2N ; h2N decreases with s for any a under these condiions.

(b) Because c2 and thus e¤2N decrease with s when e¤2L = 0 from Lemma 7 (ii)(b), h2N decreases
with s for any a when e¤2L = 0:

Based on this result and the result that c2 and e¤2N decrease with s for large s when e¤2L > 0
(Lemma 7 (ii)(b)); Figure C5 illustrates the relationship between s and e¤2N . (As in the …gure,
it cannot be ruled out the possibility that the relationship is non-monotonic and thus there exist
multiple values of s maximizing e¤2N locally.) In the region below the e¤2N pro…le, a < e¤2N and
thus e = a hold (as long as a is greater than the threshold wealth level for sectoral choice), and in
the region on or above the pro…le, a ¸ e¤2N and thus e = e¤2N hold. Because h2N = [±N(1¡s)e]°

when a < e¤2N decreases with s from e = a; for each a such that a < e¤2N holds for some s, s that
maximizes h2N when a · e¤2N is on a segment of the e¤2N pro…le or a segment of s = 0 represented
by a thick solid line. By contrast, h2N when a > e¤2N decreases with s when e¤2L = 0; because c2
and thus e¤2N decrease with s from Lemma 7 (i); while when e¤2L > 0; it increases (decreases) with

s if
d((1¡s)e¤2N)

ds
/ ¡

1

1¡s
+

de¤2N
ds

> (<)0; which implies that
de¤2N
ds

< 0 when
d((1¡s)e¤2N )

ds
= 0:

Hence, s that maximizes h2N when a > e¤2N is on the same thick solid line.
From the …gure, if an individual has a · a0, h2N is maximized at s = 0; while if she has

a > a0; h2N is maximized at s = 0 or at s on a portion of the thick solid curve below the wealth
level. (When a > a0; h2N could be maximized at s = 0; because e¤2N at s = 0; which equals a0;
could be greater than (1 ¡ s)e¤2N when e¤2N > a0:) If TN , T2; ±N ; and ±L are su¢ciently high, from
Proposition 4 (ii)(a), c2 and thus e¤2N are maximized at intermediate s: Hence, (1¡s)e¤2N and thus
h2N when a ¸ e¤2N are maximized at intermediate s when TN , T2; ±N ; and ±L are high enough.
Suppose, without loss of generality, that such s is sF in the …gure. Then, if an individual has
a ¸ aF ; h2N is maximized at s = sF ; while if she has a < aF ; s maximizing h2N is on a portion
of the thick solid curve below the wealth level and thus s < sF . As a decreases, such portion
of the solid line shortens and thus s maximizing h2N weakly decreases. At some a; h2N at such
intermediate s becomes smaller than h2N when e = e¤2N at s = 0; and s = 0 maximizes h2N for
smaller a. (When the critical a below which s = 0 maximizes h2N is smaller than the threshold
wealth level for sectoral choice, intermediate s maximizes h2N of those who choose the national
sector.) When TN , T2; ±N ; and ±L are su¢ciently low, (1 ¡ s)e¤2N when a ¸ e¤2N is smaller than
e¤2N at s = 0 and thus s = 0 maximizes h2N for any a.

21


