Appendix C (Online Appendix) Proof of lemmas and propositions
of the general case

Proof of Lemma 4. The result is proved by examining under what conditions each case is
realized.

(i) [Case 1: e5; = 0 and the indifference condition holds for those with a > e3,] As
explained in Appendix A, gzlz is determined by (28) independently of the distribution of wealth,
as in the unconstrained case with e3; = 0. Thus, this case exists iff the condition for e3; = 0 in

Section 4 holds, i.e., when s < s or s > S, and, from (A3) in Appendix A, the following is true
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which can be expressed as
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Because the RHS of the above equation decreases with e}, and thus increases with s from (21)
and (28), for given F(-), there exists a critical s € (0,1) such that the condition holds for greater s
or the condition holds for any s, if the RHS of the equation at s = 1 is strictly greater than the LHS,

e, 22(1—y) < SH & F(0) < =& (ejy — 0 as s — 1 from (21) and (28).) For given

s, the condition tends to hold when the proportion of those with adequate wealth for education is
high, i.e., F(e},) is low. Thus, the critical s, which is denoted by s*(F') € [0, 1), increases as the
proportion of those with adequate wealth is lower. (s™(F) is set to be 0 when the proportion is
high enough that (C2) holds for any s.) Hence, the economy is in Case 1 if F'(0) < T and

=y
either s € [sT(F), s] (when sT(F) < s) or s € [max {3, s"(F)},1].

[Case 2: e}; = 0 and the indifference condition holds for those with a = @y < e}, ]
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This case exists iff the condition for e5; = 0, Y6 saT*Ty!™ (%) (1)~ <1 (in the proof

of Lemma 1), holds and the condition for ag < e, holds, which, from (A5) in Appendix A, equals
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This equation holds with equality when ay = e}, from (A5) and, as the proportion of those
with adequate wealth rises (i.e., F'(a) for given a decreases), ap increases and converges to e}

from the proof of Lemma 5 (ii). Hence, the above equation with ” =7 divides this case and Case
1, which, from the proof for Case 1, can be expressed as
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From the proof for Case 1, when s < s or s >3, the critical s, s7(F), if exists (thus F(0) <

T must hold), increases as the proportion of those with adequate wealth falls, and given
Y(1-a)

F(-), the economy is in Case 2 (Case 1) for s < (>)s*(F), while if F(0) > %, (C2) does not



hold for any s and thus Case 2 is realized for any s. Hence, when s < s or s > 3, Case 2 is realized
if F(0) > m or if s € [0, min{s™(F),s}] when s™(F) >0 or s € [5,s7(F)) when s(F) > 5.
Unlike Case 1, the condition for e; = 0 holds for some ranges of s € (s,5) too. In particular,
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ey (1) = =1, if exists, is larger

than s (smaller than 3) and increases (decreases) as the proportion of those with adequate wealth

falls. (It is not clear if there exist more than two critical values of s.) This is because gzi’ decreases
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as the proportion falls from Lemma 5 (ii) and thus 7 for given s is lower than Case 1.

Denote the smallest (largest) critical s by s(F') (8(F')). Then, if s(F') and S(F) exist, which
is the case when the proportion of those with adequate wealth is high enough (because s(F') and
5(F) respectively converge to s and S as the proportion rises), the economy is in Case 2 at least for
s € [0, min{s"(F),s(F)}) when s*(F) > 0 and for s € (5(F),s"(F)] when s™(F) > 3. (If critical
values other than s(F') and 3(F) exist, some ranges of s € [s(F),s(F)] too belong to this case.)

When the proportion of those with adequate wealth is low enough, 3(F') and s(F') do not exist
and the economy is in Case 2 for any s. This is because, as the proportion falls, IIE[IZ;]Z decreases

the smallest (largest) critical s satisfying vérsaT>*Tn
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and converges to 0 from the proof of Lemma 5 (ii) and thus v67saToTy'~ <g221£’> H'—t<1

for any s.

(ii) [Case 3: e5p > 0 and the indifference condition holds for those with a > €5,]
, H N (thus e}y and e};) is determined by (29) independently of the
distribution of wealth, as in the unconstrained case with e5; > 0. Thus, this case exists iff the
condition for €5, > 0 in Section 4 holds, i.e., when s € (s,3), and, from (A8) in Appendix A, the
following is true
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As the proportion of those with adequate wealth falls (i.e., F'(a) for given a increases), the RHS
of this equation decreases, thus the condition holds with equality when the proportion is lowest in
this case (for given s). Hence, the economy is in this case if s € (s,5) and the proportion of those
with adequate wealth is high enough that the above condition is satisfied.

[Case 4: e}; > 0 and the indifference condition holds for those with a =a € [e};, €5 y)]
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This case exists iff the condition for e3; > 0, y6rsaT2Ty'™® (%) ()"~' > 1 (in the proof

of Lemma 1) holds (thus s € (s(F),5(F)) must hold) and the condition for a € [e3;,e},) holds,
which equals, from (A11) in Appendix A,
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As the proportion of those with adequate wealth rises, @ rises from the proof of Lemma 5 (ii).
Thus, when the proportion is supremum in this case, @ — €3, and 2N —

[bn(1—5)] (521\1)*(1 Fesn)) from (All). Hence Hon _ [5N(1_5)}7(531\7)1(1_}7(5;1\7))
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divides this case and Case 3. Given s, the proportion of those with adequate wealth is lower (i.e.,
F(a) for given a is higher) than Case 3, because @ — e}y (@ = e}y) when the proportion is

supremum (lowest) in this case (in Case 3).
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At s = 5,5 and thus e3; = 0, the equation becomes T = O Flesn) , the same as

Case 1. That is, the dividing line and s = s (F) intersect at s = s, 3.




[Case 5: €}, > 0 and the indifference condition holds for those with a = a < e}, ]
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This case exists iff the condition for e, > 0, v6psaTo*Ty!™ (%) (1)~ > 1 (in the proof
of Lemma 1), holds (thus s € (s(F'),5(F')) must hold) and the condition for a < €3; holds, which

equals, from (A14) in Appendix A,
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As the proportion of those with adequate wealth rises, @ rises from the proof of Lemma 5 (ii).
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Thus, when the proportion is supremum in this case, a — €5, and 2 H2L feEL 7 P FO)
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from (Al4). Hence, 7% = —— — divides this case and Case 4.
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Given s, the proportion of those with adequate wealth is lower (i.e., F'(a) for given a is higher)
than Case 4, because @ — e3; (a = e};) holds when the proportion is supremum (lowest) in this

case (in Case 4).
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When e3; = 0, the equation becomes %‘Z— = FO) , which is
different from T}%z% = [5N(178()5?YJ¥,](7€(§1;)F(62N )), i.e., s = sT(F). Hence, the dividing line between Case

4 and Case 5 does not intersect with s = s™(F) and the dividing line between Case 3 and Case 4
at s = s, 5. This implies that when s is close to s or 5, Case 5 is not realized. ®

Proof of Lemma 5. (i) As explained in in Appendix A, %ﬂi (thus e}, and e}) is determined
independently of the distribution of wealth by (28) [(29)] when e}; = (>)0. If the proportion of
those with adequate wealth falls (i.e., F'(a) increases for given a) so that the numerator of (A3)
[(A8)] in Appendix A decreases and the denominator increases when e3; = (>)0, pay must increase
for the equation to hold.

(ii) [Case 2: e}; = 0 and the indifference condition holds for a = @y < e};] Because

o
Tn(6n(1— S)ao)’y—% (%) ap increases with ag from @y < €5, the relationship between II%I;’

and ap satisfying (A4) in Appendix A is positive. Because e}, decreases with 2N from (21), the

relationship between g”’ and ay satisfying (A5) in Appendix A is negative. When the proportion

of those with adequate Wealth falls (i.e., F(a) increases for given a) so that the numerator of (A5)

decreases and the denominator increases, %’2‘% satisfying (A5) must decrease for given ag. Hence,

ZQQJZ and ap decrease from (A4) and (A5). From the equations, when the proportion falls to the

point that F'(0) — 1, H”Z — 0 and ap — 0, while when it rises sufficiently, ag — €3,;, which is the
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threshold of Case 1 (note that €5, decreases with
[Case 4: €, > 0 and the indifference condltlon holds for a = a € [€};,€5,)] Because

o
Tn(bn(1—s)a)’ — = (ITJZ—IZ?M) a increases with @ from @ < e}, the relationship between T}%fz—’
and a satisfying (A10) in Appendix A is positive. Because e}, decreases with ﬁﬂi from
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(21)
and e}; increases with HQN from (24), the relationship between yiev and a satlsfymg (A11) in
Appendix A is negatlve When the proportion of those with adequate Wealth falls so that the

numerator of (A11) decreases and the denominator increases, g (A11) must decrease

for given a. Hence, II%N and a decrease from (A10) and (All). From the equations, when the
proportion rises sufficiently, @ — €3,;, which is the threshold of Case 3 (note that e}, decreases




and e3; increases with %ii) By contrast, when the proportion and thus ZHan e fall sufficiently,
either @ — €3, which is the threshold of Case 5, or the condition for e3; = 0 holds with equality,

et
ie., yorsaTyTy = <M> (I)’~1 =1, and the economy shifts to Case 2.

Hyp,
[Case 5: e3; > 0 and the indifference condition holds for a = a < e5;] The relationship
between gZN and @ satisfying (A13) in Appendix A is positive, while the relationship between ZQN

and a satisfying (A14) is negative because e}, decreases with Igff from (21). When the proportion

of those with adequate wealth falls so that the numerator of (A14) decreases and the denominator
increases, IIEJLV satisfying (A14) must decrease for given a. Hence, g“’ and a decrease from (A13)
and (A14). From the equations, when the proportion rises sufﬁc1ently, a — e3; (note that ey

decreases with HZJX and e3; < e},), whereas when the proportion and thus M fall sufficiently,
1,0[ -
the condition for e}; = 0 holds with equality, i.e., Y6saTy*Tn1~ <%> ()"~ =1, and the

economy shifts to Case 2. m

Proof of Proposition 3. The result on human capital is from Lemma 5 and (12), (13), (21),
and (24). (i) Because Z 7> does not depend on the distribution of wealth from Lemma 5 (i), net
earnings and Consumptlon too do not depend on the distribution.

(ii) From Appendix A, consumption of those who have relatively large wealth and choose the
national sector is given by (30) for those with a > €5, and by (A6) for those with a < e}y, while
consumption of those who have relatively small wealth and choose the local sector is given by (A12)
for those with a > e}, (Case 4), and for those with a < e}; by (A7) (Case 2) and (A9) (Cases 4
and 5). Net earnings in unit of the final good equal consumption minus wealth.

Because ngz’ decreases as the proportion of those with adequate wealth falls from Lemma 5 (ii),
from these equations, consumption and net earnings of those who choose the local sector decrease
and of those who choose the national sector increase. Hence, consumption and earnings inequalities
between any pairs of national and local sector workers increase. m

(29)
when e3; > 0 and by (28) when e}; = 0, same as when everyone has enough wealth for education.
Thus, Lemma 2 applies.

In Case 2, as shown in the proof of Lemma 5 (ii), the relatlonshlp between ff” and ag satisfying

(A4) in Appendix A is positive, and the relationship between g (Ab) is negative.

For given @y, an increase in s lowers HzN satisfying (A4). From (A5) and (21), for given agp, an

increase in s lowers gZN satisfying (A5) Therefore an increase in s lowers I;IIZN

In Case 4, as shown in the proof of Lemma 5 (ii), the relationship between %212—’ and @ satlsfylng
(A10) in Appendix A is positive, and the relationship satisfying (A11) is negative. For given a, an
increase in s lowers HQN satisfying (A10), because the derivative of the expression inside the curly
bracket of the RHS Of the equation with respect to s equals

1 —
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From (A11), (21), and (24), for given a, an increase in s lowers g’;fg’ satisfying (A11), because the
derivative of sej; with respect to s equals

1
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l—a|T=
— b | s T T = (4) ] > 0.

Therefore, an increase in s lowers gzN

In Case 5, as shown in the proof of Lemma 5 (ii), the relationship between Ié

(A13) in Appendix A is positive, and the relationship satisfying (A14) is negatlve For given a,
an increase in s lowers ff;;’ satisfying (A13). From (A14) and (21), for given a, an increase in s

lowers gifz satisfying (A14). Therefore, an increase in s lowers gzi’ |

Proof of Lemmma 7. Only the proof of the result on the consumption is presented, because net
earnings in unit of the final good equal consumption minus wealth. (i) [Case 1: the indifference
condition holds for a > e} ]| Because ¢y for any a is given by (30) from Appendix A, Lemma 3
(i) applies and thus co decreases with s.

[Case 2: the indifference condition holds for a =@ < e};] Because ZQJI\J’ decreases with
s from Lemma 6, ¢z for a < ap decreases with s from (A7) in Appendix A. From (30) and (A6)
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in Appendix A, d_s2 for a > ap is proportional to — [l—z—s + a(%%) _ZEL_] In the following,
—1 dII-IIZN
5 o) =RE > 0is shown,

Totally differentiating (A4) gives

1
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where 2T (6n(1—s)ao) —L@é‘z’—ggf)a > 0 from ap < ey

Totally differentiating (A5) gives
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where, by totally differentiating (21),

1 o
desy = — [1 ~ds + a<H2N> d%]lm‘;. (C10)

When the first and third equations are substituted into the second one and divided by ds, the
Hon
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resulting equation consists of the term associated with —LHQN + —72 HZL , the one associated with
H2N H2N

d57=- (e} -
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Since 115 ¥ + a—72% is the largest from —72- < 0 (Lemma 6) and (A4), - e +a—72 > 0.
Therefore, co for a > ay decreases with s.
(ii) [Case 3: the indifference condition holds for those with a > e},] In Case 3, as
explained in Appendix A, gQN is determined by (29) as in the unconstrained case. Since ¢y for
a > e5; is given by (30) as in the unconstrained case from Appendix A, Lemma 3 (ii) applies.

Since ¢ for a < e}, is given by (A9) in Appendix A,
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EO(( _a)<H2L> ds +77+6Lsa' (1)



Hon

dc
Because ZﬁL < 0 from Lemma 6, when q is sufficiently small, d—2 < 0 for any s in this case.
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For any a < e3;,
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(from (A20) in the proof of Lemma 3),

where, from (24) and (A17) in the proof of Lemma 3),
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By substituting (C13) into (C12), (1 — «) <g221£’> 2L 4 ylf;;;:* is proportional to
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where the last two equalities are from By = 61,8(7T2T, lea)EBl. Noting that the expression
inside the square bracket of (C14) is same as that of (A21) in the proof of Lemma 3 (ii), the proof
of the lemma applies.
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Hence, =2 <0 whens>a (also when s is close to 0 or s < a and close to «), and —2 <0 for
s

any s in this case when a(< e3;) is sufficiently small or when T, Tb, 6, and 6, are sufficiently
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low that (1—«) (I;ZJLV) HQL + 7= 6L82L* = (G < 0 for any s. Further, when Ty, T5, 6y, and dp,
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are sufficiently large that G > 0 and thus % > 0 hold for not very small and not large s (Figure
s

dc
A2) when a > e, ds2 > 0 holds for such range of s when a < e3; as well, if a is sufficiently large
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that (1 — Oé) (H2L) + ’YZ‘HSLS(J, =G — Y (Z‘HSLse;L - Z+§Lsa) >0

[Case 4: the indlﬁ'erence condition holds for a =a € [e};,e5y)]
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(Results for a > a) From (30) and (A6) in Appendix A, % for a > @ is proportional to
5
ldH2N 1dH2N
- [ﬁ +a(H2N> %} In the following, it is proved that 2 —i—a(l;lleg’) Z‘EL > 0 and thus
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or when Ty, Ts, and 6 are sufficiently low. It is also
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proved that there exist ranges of s (< «) satisfying 1—“_%+a<%§> —ZI;"L < 0 and thus E > 0 for

a > a, when Ty, T, and § are sufficiently high.
Totally differentiating (A10) in Appendix A, one of the two equations determining @ and

gives
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where (A10) is used to derive the term associated with ds and the expression associated with da
is positive from (A10) and @ < e} .
This equation can be expressed as
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Totally differentiating (A11) in Appendix A, the other equation determining @ and %%, and
dividing the resulting equation by ds gives
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where, A; is a positive term, and, to derive the last equality, the following equations and (24) are
used.
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From the equation that is obtained by substituting (C16) into (C17) and eliminating 3%, 2=+
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1d
oz(gzi’) HQL > 0 if L+a<féz21;> ZIS?L is higher than other similar expressions in the equation.
In the followmg, it is proved that this is the case when s > m or when Ty, T5, and O are
sufficiently low.
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1 _1
1_1 v am 1-—a(Hyy _1l=s 1
e (s a) |:(’76L8) oI TN (H2L> :| sy Ors <0
1
7 a 1—a ( H: 1—o| 1=y
& (a—s)J—a(l—s)l <0, where J = |v6rsaT>Ty (TJZ;“JLE) (C20)
ldHQN 1 EEL 7 1 _1qH2n
;L+a<H2N) " Hpyp > 1 +~8L (I+6rse5, )Y~ tey, (F(@)— F(ezL )+ [o2E (+6rsa)Y T adF (a) a<H2N> Hop
=\ Har) s (T+oL5¢5,)7 (F(@)—F(eg,))+ fo 2L (46 sa)1dF(a)+ DV F(0)]  V2E 4
iff



a[i—i—w? (+61565,)1 3, (F@—F(e5, )+ [52 (48p50~ adF(@)] 5
1-s = 7=

(+615e5, )7 (F@)—F(es )+ Jo L (1461, 5a)7dF (a)+ ()7 F(0)
(L8 sey )Y es) (F(@)-Fle;,) D)+ [ (48 50) 7 'adF(a) _ 1-a
T461,5e5,)7 (F(@)—F(e3,)+fo °L (+815a) dF(@)+0) F(0) ~ ©
& (+orses) ol —9ores, — -l +8Lse3 )(F(@) — Fle3p)

*

—i—/oe%(z—i‘é/;sa)”l la(l—96ra—(1—a)+61saldF (@) — (1 —a)1)"F(0) <0

1
1—s

& (I +6pses) [(a—s)éres,— (1—-a)l|(F (@) - Fesy) +/062L(7+6L8a)7_1 [(a—s)dra—(1—a)l|dF (@ —(1—a)(1)"F(0) <0

© (7+6Lse§L)”‘% {(a=s)J—a(1=9)} (F(@)-Flezr) +/0 16150y [(a—s)6pa—(1-a)JdF@ — (1-a) (1) F(0) <0,
(C21)

where (24) is used to derive the last equation, and, as for the second term, (a—s)éra—(1—a)l <
(a—s) (J-1)—(1—a)l = 1 [(a—s)J—a(1—s)I] from (24).

H 1—a| T— _
1 gten 1_77"0475L3T2QTN1Q ﬁ) w +H _1 gHan

d
HQN HQL a 1— H2N H2L
—'L—l—oz(—) > 277 — +alFE) 3~ iff
Hon\ 72| T
av&LsTgaTN1*a<H22]z>

1-—s Tds Z 1I-a s

1
o 1- 1—77—7 a’yéLsTgaTNl_o‘(%%)liﬂ 17’Y+Z o
Ta s s =1
|:a’y§LST2°‘TN1_a<T_I22JlVT> :|
1
l—a| 1=+ -
. 7(%%—%) [a75L3T2aTN (%j;) ] T4 laicg
& y(a—s)J +a(l—-s)(1-7) < 0. (C22)

H.
1d 2N
From (C20)—(C22), —L—&—a(gzN) —IbL g higher than the other expressions if (C22) holds.

L
Since e; > 0« J > [ from (24), this is true if y(a@ —s) + a(1 —s)(1 —9) <0 & s > P
Further, (C22) is true for s > a when Ty, T, 6 5 and 6y, are sufficiently low from the next lemma.

—Q
Lemma C1 (i) T,°Ty'~ a(ﬁzlg) increases with T, Ta, and 6. (i7) gzi’ decreases with 6y,.

11—«
Proof. (i) Suppose the contrary. Then, an increase in T, T, or én lowers ToT1— (ﬁﬂi) ,

Hyp,
H2N

which implies that decreases. Then, a must decrease, since (A10) in Appendix A can be

expressed as follows
a —a e ~ I~ «a - @ 17 I
(1—)TyTn? <T}%Ly'> ((SN(I—s)a)V—a—(1—7){(75,;3)704% Tt (%JLE } —1—5 (C23)

«
Because a decrease in To%Ty'~® <%> lowers e3; from (24) and a decrease in I;élz and an

increase in Ty, T, or § raises €}, from (21), for (A11) to hold, @ must increase, a contradiction.

11—«
Therefore, To*Tn'—* <%> increases with T, T5, and dp.




(ii) The result holds because for given @, an increase in 6y, lowers %‘Z— satisfying (C23) (the

LHS of the equation increases with 61,) and 2N & satisfying (All). m
Hyn
fit 1dH dey
Therefore, li_s—i—oz( 2”) —72L > 0 and thus d— < 0 for a > @ when s >
s

2 m, and if Ty,
Ts, 65 and 67, are sufficiently low, when s > a. y(a—s)J +a(1-s)(1—y)l < 0 when 67, is sufficiently
low, because (o —s)J+a(1-s) (1)l = (a—s) (6 sel; +1) —a(1-s)l < (a—s)(§psely+1)—a(1-s)l,
where €3, increases with 67, from (21) and Lemma C1.

1 g2 1 gH2n
Similarly, ﬁ—i—a(g?;;f ZjL <0if = +a ffiij ZjL is smaller than other expressions in

the equation obtained by substituting (C16) into (C17), which is the case when (C21) holds with
7>". Noting that e}; = %S(J — 1) from (24) and (C21) holds with ”>" only if s < «, the LHS
of (C21) increases with J, because the derivative of the LHS of the equation with respect to J is

proportional to —(1;7) {(a=s)J—a(l—s)l} + (a—s) > 0. Therefore, from Lemma C1, there exist
Hyn

1d dcs
ranges of s (< «) satisfying —”L+a<g221;f> H2L < 0 and thus d_ > 0 for a > a, when Ty, Ty,
s

and o are sufficiently high.
d
(Results for a < e5;) From (A9) in Appendix A, % for a < e3; is proportional to (1 —
s

_1gHan Hon
) Mo dH2L+ —bra_ Gin Ty < 0 from Lemma 6 @<Ofr ny s in this case when a is
Y\ Hzr V6 sa PMCC —4s om Lemma b, -~ or any s s case when a is

sufficiently small.
For any a < €5,

(1 )(HzN)il dgg 4 6La < (1 )(HzN)il dléélz 4 6L6§L (024)
—a) |7 = —o) | FH = .

Har ds 71 + 61,50 Har ds 7l+6Lse§L
Tn the foll d that (1—a) (ax) " dl’{m P 0 and thus 22 < 0, wh
n the following, it is proved that (1—«) <H L) +7[+6L$€§L < 0 and thus ds < 0, when

s> m or when Ty, Tb, 6y and &, are sufficiently low.

l—a|1—~
When s > a or when Ty, Ts, 6 y and 61, are low enough that (a—s) [76LsaTgaTN1°‘ @szz) } s

1
—a]T=H -
1— 71 —1 .
_ 1y Hon %X"('Y(SLS)’YO(TQQTNl a(’j,gf;) w +%%+a
a(1-9)] < 0holds (Lemma C1),¢! 1—;Ls+a<HHL21;’> ggL >
l—a|T—v 7
1— H I
%{(75L5)WQT2QTN1Q(HZZ> +m+a

1gH2n
a@%ﬁ) HQL from (C20).

1— AP
o, sta

—a 1—'y
{(’ﬁLS)WQTf‘TNl a( ) w 1+*ys L

sy

1 >O{ ERNYS (_Z+6Lse;L>“e;L(F(a>F(ez;[*,>>+_f§3L<i+aLsa>~l_adF(aﬂ
1TW+L+6 (46 sesp )Y (F(@)—F(es; )+fo 2E (+6sa)VdF (a)+(1)YF(0)

l—ay Hon\
o |:(’Y§L5)VO¢T2°‘TN1Q<H_2L> 5.5

l—a|1-
holds too, because (J = [WéLSQTQQTNIQ@LzZ) a} W)

l—a |1
C1The inequality holds when &, is sufficiently low, because for s < a, (a—s) |[y6LsaT2*Tn @%) } T a(l—

8)l = (a—s) (6rsesp +1) — a(l—s)l < (a—s)(6rsesn +1) — a(l—s)l, where ey increases with &7 from (21) and
Lemma C1.

10



losy_J +(1+W)s IL-&-A 7 1 e2L 1
1'y s _YoLs Y ops > Oé|: 7 +~6 (I+6rsesp)Y ‘es; (F(a)— F(e2L )+Jo (I+6Lsa)~ “dF(“):|
e 1 lay - é]L _ +6i —+a 1—s (46 nse3,)Y (F@)—F(e3,)+ fO2L (1+6sa)YdF(a)+ (1) F(0)
J  (4y)s—1 7 | i}
o 1 a- SAY)'yéLer Y 5Ls+sa > Oé|: S +(l+5Lse§L)7’15L562L( (a)— F(62L +fO2L (I+6psa)7~ 16LsadF(a):|
1— — -
s _’y_a 76i3+6és+a 1-s (I4+-6pses )V (F(a)—F(e3r,)) +f02L (I+61sa)YdF(a)+(1)YF(0)
J 1+9)s 1
e e et 1

+s a * 37
y SLs s brsesr J—l
= 1—s l—ay J | 1 2 a<1—5+2+51:se* ) a(l s+ J) (from (24))
+3 .+a 2L
a ~brs ' brs

1 1 (1—oy) =Z=+a s—l—aa_
& 5 {{a-sn g+ Bt b ] - | (1-ay) s +agh +ad | p > - e

& (@—esp) [(a—s)J —a(l—s)l] <0 (from (24)). (C25)

el _14H
Hence. either 04[1—7—4-75 (I4+6Lse3,) ey, (F(@)—F( (e3))+Jo 3L l+5Lsa)’YladF(a):| n a<HLN> La28
’ —s

. 128 ds O
(I+6rses, )V (F(@)—F(es )+ fO2L (146 sa)YdF (a)+(1)Y F(0) 2L

1
H. —a| =7 _
ﬁ {oﬁ&L SToTN1— <HL2IZ> W +1

_a 1=y
l-a s

1 gHaN
+a<g221;) Z” is lowest among the terms of the

equation obtained by substituting (C16) into (C17). From the equation, the lowest term must be

negative.
)1 a“ li'y _
+1 H
-1 gy
Hon d

+a<H—%) L <. Thus,

= {075L5T2QTN1 a(
If the latter is lowest, —2— 1=

Y l-a s o] T
|:ory(5 LsTooTh1— (%ZM> :| !
Hoy * 7 1 7
(1_a)<m>71 dHQ;Z Loy 6L€2L < _1—’}/1%—7‘]%*[ +7;(J—l)
Hor ds I s 7 J

; e 1 gHan
Otherwise, a[l—”Ls+75L (_l+6Lse§L) “les (F(@)-F (e30))+Jo 3L l+6L8a)“/l_adF(a):| +a<%> 1 dg? -0
(I+érses, )V (F(@)—F(eb, )+f02L (1462 sa)vdF(a)+(1)Y F(0) 2L
Thus,

H. % _ _
(o)) R T —(1—a>[i+m (ouses )" es (F@)-Flegg)) Iy (dpsay “dF(a)LzJ !
Hor ds [+ 6rsel;, 1=s (I+6Lse3, ) (F(@)—F(es,) +102L(z+6Lsa)mF( +O FO)] s J

1

< k_a_1> _

7(1_5 s) sJ

= I1-(2-a)s]J—(1-s)
5(1_3)J{[ ( a)S] ( S) }7
which is negative when s > 5=— or when T}, T3, 6 and ¢, are sufficiently low (Lemma Cl)
Ez.&
Therefore, (1— ( )

when Ty, 15, 6 ~ and &, are sufﬁc1ently low

d
(Results for a € [€;,a)) Finally, from (A12) in Appendix A, f < 0 for a € [e};,a) if

el d
_ZL_ —Z T
l 5. se < 0 and thus B <0 fOI' a < 62[ when s > or

—1 dH2N -
[(1—@) <%> HQL +1] ﬁ < 0. The result can be proved following a similar step as the above

11



1

1—a| 1=
7 T H v
1—v ’Va’yél‘s 2 Nlia <—Hz211;/> } !

dc _
proof of d_s2 < 0 for a < e};. In particular, when ﬁl—sl

_l’_

1
l—a| T—x
|:Oz’75L$T2aTN1a (%ﬁ’) }

o\t R
O‘(Hif) - <0,
. 1oy =J +1 1—~1
(1_a)<H2N> Hop +7 < _ — V1 +1:_ _'Y_<0
Har, ds s s J s s J ’
7 * e3 — -1 dﬂz&
and when o |:1L_S+')/6L (_l+6LsefL) eEL(F( a)— (62L )+[ 2L l+5LSa)’Y 1_adF(CL):| +CV(%§%> _dg‘L_ < 0
(I4+6pses; )V (F(a)—F(ek) )+f02L (1+61sa)YdF (a)+(1)Y F(0)

—1 dII_?N 0% J 1 (146 sel, )V~ ek, (F(a)—F (e} )+fezL 1+67,5a)" LadF (a) 1
(o) Lo 2 2L f ol gy St Ry . [+l
S

ds s|vy s 1=s (6565, )7 (F@)—F (e, )+ fo2E (1461, sa)YdF(a)+(1)7 F(0) s
1 1 -
< ;{E[—(Q—a)8+1]J—l}, (026)

which is negative when s > ﬁ or when T, 15, 6, 01, are sufficiently low from Lemma C1.
[Case 5: the indifference condition holds for a =a < e}, ]

- d -
(Results for a > @) From (30) and (A6) in Appendix A, % for a > a is proportional to
s

o\ "L A Ho L
[—’7/——1-@(}1221;’) d—iL} In the following, it is proved that —7—+a<H22Z> —72& > 0 and thus

) d
% < 0 holds for a > @, when s > o or when T, T, 6y and 67, are sufficiently small, and f >0

s
holds for not large s (< «) when T, T, and 6 are sufficiently large.
In order to prove the result, the following lemma is used.

Lemma C2 (7) ngz’ and a increase with Ty, T, and dn. (i) gz;j‘j decreases with 6y,.

Proof. (i) Suppose the contrary. Then, an increase in Ty, T», or éx lowers gzlz , which implies

that @ decreases from (A13) in Appendix A. Because an increase in Ty, Ts, or 6 together with

a decrease in % raises ejy from (21), for (Al4) in the appendix to hold, @ must increase, a

contradiction. Therefore, ngLV and a increase with T, 75, and dp.
(ii) The result holds because for given @, an increase in 6, lowers both T}%z% satisfying (A13)
and 2N % satisfying (Al4). m

Totally differentiating (A13), one of the two equations determining a and zN , gives

__ 1 Hyy ”/ 1+6.a Hon Hon
73 a(l4+-6psa) Hor da = —sl+6psa Har ds + deL (027)

H2N

Totally differentiating (A14), the other equation determining a and , gives

y(L 41 Jy (+615a) " 61 sadF(a) \ Hyy Hon g 4 gHan _ [En(=s)/ne3y 1 (1-F(ejy)
l=s * s [%(14+615a)7dF (a)+(1)7F(0) HzL Har, Ja(1+61sa)7dF(a)+(@) F(0) 2N

o= {[J5 ansapar@]ar+ [y (- Plesy) 4 [ 0ar@)] A+ousa far@

[/ @81 50)7dF (@) + @Y F(0)]

da =0, (C28)

12



where, from (C10),

* H H e

dely = —[ sds+a(Fex) dH’;fLV] Gy (C29)

If the first and third equations are substituted into the second one and divided by ds, the result-

Han
d _
_’Y_ I+6pa Hoy Hor _ (1 5ra \ Hon
ing equation consists of the term associated with 17 Tross Hor + % = 7(173 +Z+6Ls’d> 7+
s 2 (14+65a)7~ 161 adF (a) o

ZjL , the one associated with ~y —1; 4 o TOL% Lac 2 I}{fN + HQL , and the one associated

(146, sa)1dF (a)+(1)7 F(0)) Hor

o () U () (1o | ST on i
with £ + a(H2L> o = a(H2L> aTs I T - The first expression is greater than

the second one because

i J& (1461, 5a)7~ *adF(a) ¢ - NPT T ~
7+6LSE>fg(Z+6Lsa)7dF(a)+(Z)’YF(O) @/0 (I+0rsa)”" (a—a)ldF(a)+(1)" F(0)a > 0.

Hon

- —ld7=+
1 v Hyy 7 I+épa Han _ = _ e Hon) " _Hap
Hence, when al—s Hap, Z —s [+6,sa Har < (a S)éLa < (1 a)l’ 1-s Ta Hyp, & 7 0.

(a — s)6ra < (1 — )l holds when s > a or when
(a—s)res;, < (1—a)l

< (a—s)J —a(l —s)l <0 (from (24)), where J = [’yéLsaTgaTNl_a (%)1 a} o ,
which is true when T, T5, and 6 are sufficiently small from Lemma C2.

(a — 5)6 ra < (1 — )l holds when &7, is bufﬁciently small as well, because it is true if (o —
s)oresn < (1 — a)l, where eby decreases with —ZM and —21\—’ decreases with 6y, from Lemma C2.
Nfo (l+6Lsa)“/ léLadF(a) jo (I+61sa)Y 16 adF (a)

Jo A+615a)YdF(a)+(1)7F(0) Jo Q+6psa)¥dF (a)+@)VF(0) —

1_1
From the above analysis, when E—i— > =&

H _
—1432N dc ay v—1 r
1-a 1 v H ) H, 2 Jo U4brsa)Y " Y6padF(a) .
= _= + o3| —2L < 0 and thus — > 0. Because = - increases
a T-s) T-s <H2L ds ds & +osa)y dF(a)+ () F(0)

with a from
5 +650) dF (a)+ (1) F(0)] (1+61.50) ™ 8,adF (@)~ [y([+61.50) '8 adF (a) I +8,5) 'dF (@)

= (+6,5a)" " dF ()51, {{fﬂhéma)mp(a)+(Z)7F(0)} a— [fO“(ZMLsa)HadF(a)} <Z+5Lsa)} >0,

the inequality holds when Ty, T5, and 6 are sufficiently large from Lemma C2. The inequality and

dea . fg(i«#éLsa)W*léLadF(a) _1 fg(ZJrﬁLsa)“’*l&LsadF(a) 1
72 > 0 could hold only for s < a, since T2 5050y dF @)+ A F(0) 3 [(LogsaydF(a)+ () F(O) < 3.

- d -
(Results for a < a) From (A9) in Appendix A, % for a < @ is proportional to (1 —
s

(A
142N dﬂzu
a)(—%ii) —2L V0 5“’ . Since —32
a is sufﬁc:1ent1y small

dc
< 0 from Lemma 6, d_ < 0 for any s in this case when
s

N Hyn
(I+61sa) Y6 adF(a) \ H 47T 1 v Hon  %H

From the above analysis, either ~y (— fo = or ST Y >
Y W=t JE(A+61sa)7dF (a)+(1)7F(0)) H2L T AT s

is the smallest among the similar expressions in (C27), (C28), and (C29) and thus is negative. This
Hyn

d
i ieg L Han
implies 1% j2rys + —2L < (. Hence, for any a < a,

—1 45 ora 11—« ora
1 — o) (H2x Har 4 L% (_ Lo >
(1=-a) <H2L> ds 7l +érsa 1= l+drsa

13




= —Z2——[-(1-a)(+6rsa)+(1—s)6a]

(1—s)(I+6L5a)
u_—s)(i}:m {[—(2—@)8+1] 6[,&-(1—06)[} N

. . . 1 1
which is negative when s > 5=—. When s < 57—,

(1 —oz)(M)_l i VIR 2 {[—(2—a)s+1]6pa— (1—a)l}
Hay ds T+ 6.sa (1—s)(+6150) L

< —';(1_5)@%“@) {[-(2—a)s+1] 615, — (1—04)7}

- — 7 @ (92— —(1—5)]

= ot {[~2=a)s+1]J — (1—s)l} (from (24)),

—1 dHZN

which is negative when T, Tb, and ¢y are sufficiently low from Lemma C2. (1— a)(%) % +
7% < 0 when &, is sufficiently small as well, because [—(2—a)s+1]6a—(1-a)l < [-(2—a)s+1]6 ey —

(1—a)l, where e}, decreases with %ﬂi and %ZM decreases with ¢z, from Lemma C2. m
2L 2L

Proof of Proposition 4. Only the proof of the result on the consumption is presented, because
net earnings in unit of the final good equal consumption minus wealth. (i) From Lemma 7 (i),
consumption of any (group 2) individual decreases with s when e}, = 0. From (ii) of the lemma,
if Ty, To, 6, and 61, are low, it decreases with s when e5; > 0 too. Hence, from Lemma 4 and
Figure 4, consumption of any individual decreases with s for any s, if the proportion of those with
adequate wealth is low enough that Case 2 is realized for any s or if T, Ta, 6, and 6y, are low.

(ii) From Lemmas 4 and 7, consumption of any individual decreases with s for small s (when
s is small enough that e}; = 0 holds) and large s.

(a) In Cases 1 and 2, ca decreases with s from Lemma 7 (i), and in Case 5, when a is sufficiently
low, c2 decreases with s from Lemma 7 (ii)(b). As for Cases 3 and 4, the proof of Lemma 7 (ii)(b)
is valid as long as e3; > 0, which is not true when s is very high or very low, as shown in Lemma
4. Here, the result is proved by taking into account how s affects whether e5; > 0 or e3; = 0.

[Case 3] As for Case 3, the proof of Lemma 7 shows that ¢y for a < e3; decreases with s when
a is sufficiently small. Because €5; =0 when s > 5 or s < s from Lemma 4 (see Figure 5), for any
positive a, a > e5; holds when e35; > 0 and s is close to 5 or s. Hence, it must be proved that c;
for a > e3; when e3; > 0 and s is close to 5 or s decreases with s.

The proof of Lemma 7 shows that co for a > e3; decreases with s for s > . From Lemma 1,
$>1—7(1— ). Because @ < 1 — (1 — ), the consumption decreases with s for any s € [a,5).

From (A23) in the proof of Lemma 3, when s < «, % <0 iff
s

aaLﬁ)“ ST (1) as) T
1= {a—[y(1—a)+a]s}t== dr(1-7)

(VT Ty ) (L - )83 5 (‘

Ltagts (1-0) % —a g
e ake’ l—afq vy 11— | (abp)” _ 1—y |5 ! 7(1_5) 1= (a_s) L 1—~
< TN [(1 a)(SN] |:(1,7)17'y:|a[7(1 7)] [ {Oé—[’}/(l—Oé)+Oé]S}1_a < (6L)

(1—5)7"*(a—s)!™7 =
ac-N{a—[y(1—a)+a]s}d-a)1=) =
(C30)

& (6n5)117 (6,)t Y00 (1 -y 0Ty ) (1) Ty [ 25?70 —)

From (A15) in the proof of Lemma 1, e, > 0 iff
(5N)v(1fa)(5L)1*7(1701)%1_7)(177)(1704)(&13)a[(l_a)TN]lfaslﬂ(lfa)(1 _3)7(1701) > (7)1*’7' (C31)

14



N 1- .
The LHS of (C30) equals that of (C31) times [aa {a—(l[aj(si)—a)(i;]i)}<1*a) " — {afl[;(?_a)(i;ﬁ)}(lfa)

decreases with s for s < o because
o 1 (-a)[y(-a)+q]

1-s a-s a—[y(1-a)+als
—(I4+a-s) [Y(1-a)+qa
- T e s b el
—(I+a—-s){a—[y(1—a)+a]s} + (1 = s)(a—s) [y(1—a)+q]
(1-s)(a=s){a—[y(1-a)+als}
—(I=s)+(1-0a)
(I=s)(a=—s){a—[y(1—a)+as}

’ a”‘{a—(l[v_(sl):;)(i;]i)},(lfa) =1 at s = 0. Hence,

=(1-a)

= (1—@)@ < 0.

(1=s5)"*(a=s)

Further ac{a—[y(1—a)+a]s}d-2)

< 1 for s € (0,a).

c
This implies that when e3; > 0 and s is close to s, d—2 < 0.

[Case 4] The proof of Lemma 7 shows that ¢y for cf < e3; decreases with s when a is sufficiently
small. Since e5; = 0 when s is very low or high from Lemma 4, for any a > 0, a > e3; when
e5; > 0 and s is close to the threshold s below or above which e3; = 0. Thus, it must be proved
that co for a € [e3;,a) when e5; > 0 and s is close to the threshold s decreases with s.

dey
From the proof of Lemma 7, dcs < 0for a € [e3;,d) when s > 1—. When s < 72—, from (C26)

in the proof of the lemma, Cfiis < 0if $=[-(2—a)s+1] J—1 < 0. When e}, — 0 < J — [ (from

dco
the proof of Lemma 1), dcs < 0 because T=[—(2—a)s+1] J— 7 — E0—as 15 -(29)7 ), Hence,

1-s
d
ﬂ < 0 for a € [e3;,a) when €5, > 0 and s is close to the threshold s.

(b) From Lemma 7 (ii)(b), when Ty, T3, 6y, and 61, (in Case 3) are sufficiently high, there
exist ranges of s over which consumption of those with relatively large wealth increases with s, if
such ranges of s are effective, i.e., if e5; > 0 is true.

determined by (29) and ¢y for those with a > €3, is determined by (30) as in the unconstrained case.
d
Hence, Proposition 1 (ii) applies and thus ranges of s over which ge > 0 holds are effective for such
s
individuals when T, T5, 0 n, and 67, are sufficiently high. As for those with a < €5, from the proof

d
of Lemma 7 (ii), % > 0 for some ranges of s, if Ty, 15, 6, and 67, are sufficiently high, e, >0
s

—1 q2an .
is true, and a is sufficiently large that (1 — «) (gif) HQL + ’yl+sa =G—v (% — Zfsa) >0,
2L

1 dﬁz.ll
where from (C14) in the proof of the lemma, the sign of G = (1—«) (gﬁi’) i —i—’yH_s is same
2L

as that of (A21) in the proof of Lemma 3 (ii). Hence, the proofs of the lemma and Proposition 1

d
(ii) apply and ranges of s over which £ > 0 holds are effective when Ty, 1o, 65, and O, are high

enough that the supremum of s satisfyi%g G > 0, Smax, is sufficiently greater than s.

When Case 3 is realized for intermediate s, ca of individuals with a > e3; when e3; > 0 and
thus s is intermediate is given by (30), while their consumption at s = 0, at which Case 1 or 2 is
realized (Figure 5), equals or is smaller than the value of (30).“? Hence, co when s is intermediate

—Q —Q
is greater than cp at s =0 if (1—s)7 (ﬁ]imermedme S) > ( HQ;Z ]5:0> )

©2When Case 2 is realized, c2 at s = 0 could be given by either (30) (when a > e}y ), (A6) (when a € [do,€3y)),
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When Case 1 is realized at s = 0, Proposition 1 (ii) applies and c¢3 is highest at intermediate s, if
Ty, Ts, O, and 1, are sufficiently high. When Case 2 is realized at s = 0, unlike the unconstrained
case, Eiiy- and @p at s = 0 are determined by (A4) and (A5) in Appendix A, while %ﬁ—’ when s is
intermediate is determined by (29) as in the unconstrained case, which can be expressed as
1 —o 1+ 1—a 1+ 1
( 7T2aTN1 a) {[(1 Oé)[(SN (1 5)] <I;I[22]z ’intermediate s> :| ’ - |:05(6L5)7 (%’intermediate s> :| k = ﬁ#
(C32)

— —
By substituting (1—s)” (gu |intermediate 8> > <II?2’LV | s:0> into the above equation,

1 1 -
L —a i I-a T— 1
YT «a l1—a (Han _ Y _ « 1—a (Han Y(1_— ;} -
()= ([Tz In <H2L_|8:0> (1 a)éN] [TQ In <H2L‘s:0) (61s)"(1=5) } >< 1—vybrs
(C33)
This condition holds if the LHS of the equation is negative, i.e.,
1
—1 T S
A I B OB ENL i) (C31)

Because HQN %|s—o does not depend on 6, from (A4) and (A5), the above condition clearly holds

when 6y, is sufﬁc:1ent1y large. It can be proved that 21;’ |s=0 increases with T, T3, and 6 from
(A4) and (A5). Hence, the condition holds when Ty and T are sufficiently large.

The condition holds when 6 5 is sufficiently large if @y increases with 6, because <I}{I221LV | szo)_ 67\,

must decrease with 6 from the following equation, which is obtained from (A4) at s = 0.

o :
T 1 o= (c39

_ l1—a
ﬁfﬂs:o -« (TN)lfa(TQ)a (gZQIZ |8:0>

If @y decreases with §,the condition holds when ¢ is sufficiently large, because (I;ZJLV | S:0>7 67\,

must decrease with § from the following equation, which is obtained from (A5) at s = 0.

— <gz2]Z’S:O>7167V {(egN) (1-Flezn)) +f62N (a)7dF (a )}
= (Z)’YF((I())

; (C36)

<H2L |s= 0) from (21).

Hence, when Case 2 is realized at s = 0, c2 is highest at intermediate s, when T, T», 0, and
01, are sufficiently high.

[Case 4 for intermediate s] When Case 4 is realized for intermediate s, from the proof
of Lemma 7 (ii), c2 of those with a > @ increases with s for some ranges of s(< «), if T,
T, and 6y are sufficiently high that (C21) in the proof holds with ”>", which is the case only

where €3, increases with (gz;z |s= 0> Ly

- l1—a|1
when (a—s)J—a(l—s)l > 0, where J = [ysaTgaTNl_a (%;Z) } 7, and e3; > 0 is true. Since

e, >0« J > 1 from the proof of Lemma 1, e5; > 0 is true when (a—s)J—a(1—s)l > 0.
When Case 4 is realized for intermediate s, from Appendix A, ¢ for those with a > €5, when
s is intermediate is determined by (30), while their consumption at s = 0, at which Case 1 or 2

or (A7) (when a < @), because e3;, when s is intermediate could be smaller than e5y or ao at s = 0. Because
wyhsy — Paesy > wnhon — Pea for a € [ao, e5y) and wnh3y — Paesny > warhar for a < ap (note e3;, = 0), c2 of
(30) is greater than that of (A6) or (A7).
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Figure C1: Relationship between s and %ﬁé when a < e3; for large @ and small a

is realized (Figure 5), equals or is smaller than the value of (30) (footnote C2). Hence, ¢ when s

— —Q
is intermediate is greater than cp at s = 0 if (1—s)” (%’intermediate 8> > (Igélz | s:()) . Given s

and other parameters, %]imermediate s in Case 4 is smaller than the one in Case 3 from Lemmas
4 and 5, where the proportion of those with adequate wealth for education is higher in Case 3.

Similarly, given s and other parameters, 11{,221; |s=0 in Case 2 when the distribution of wealth F'(a)

is that of Case 4 is smaller than when F'(a) is that of Case 3 and (gzlz |S:0)7°‘ in Case 1. Thus,

—Q —Q
(1—s)Y (%if—hntermediate s) > (%22‘%] s:O) is true when Case 4 is realized for intermediate s, if

(1—s)7 (%iihmermediate s) in Case 3 is greater than <%§1Ly_’$:0> ¢ in Case 2 when F'(a) is that of
Case 4. From the proof of Case 3 above, this is true when Ty, Ts, 0, and 61, are high enough.

From Appendix A, ¢ for those with a € [a,e},) when s is intermediate is determined by
(A12), which equals (30) at a = €},. Hence, when Ty, T, 6, and 6, are sufficiently high that
co of those with a = €5, when e5; > 0 is highest at intermediate s, it is also true for sufficiently
large a € [a, €3 y).

[Case 5 for intermediate s] When Case 5 is realized for intermediate s, from the proof of
Lemma 7 (ii), ¢z of those with @ > @ increases with s for some ranges of s(< «), if Ty, Ts, and 6y are

sufficiently high that £ I(;i_(ZJréLsa)%léLsafj M) - 1-a 1 Because —8 L_Jo (dpsa)’ PopsadF(a)
L - a l=s’ Lsa I+6rsa a)+(
y S f(;l(lJré sa)YdF(a)+(1)YF(0) 1—s l+6rsa s f§(l+5 )YdF(a)+(1)YF(0)
.. a 1-a 1 . . % ~ s s esr
from the proof of Lemma 7 (ii), T a1 holds. Since e3; > a, this implies v >
]‘?TO‘IL_S and thus e5; > 0 is true.

When Case 5 is realized for intermediate s, from Appendix A, co for those with a > €5, when
s is intermediate is determined by (30), while their consumption at s = 0, at which Case 2 is
realized (Figure 5), equals or is smaller than the value of (30) (footnote C2). Hence, ca when s is
intermediate is greater than cy at s = 0 if (1—s)? (%%\mtermediate s * > (%‘Z—\s:o) a. The rest of
the proof is similar to the case in which Case 4 is realized for intermeidate s.

From Appendix A, ¢y for those with a € [a, e3,;) when s is intermediate is determined by (A12),
which equals (30) at a = e3,,. Hence, when T, T3, 6y, and 6y, are sufficiently high that ¢y of those
with a = e}, is highest at intermediate s, it is also true for sufficiently large a € [a, €3 ).

[s maximizing c; of local sector workers] When cy is maximized at intermediate s, s
maximizing co of national sector workers does not depend on a from (30) and (A6) in Appendix
A, and s maximizing ¢y of local sector workers when a > €3; does not depend on a from (A12) in
Appendix A. By contrast, c of local sector workers when a < e3;, which is realized in Cases 3—5,
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a

Figure C3: s maximizing cy of local sector workers

l—a _
equals aTp*Ty1~ (%22’) (I + é6rsa)? from (A9). The derivative of consumption with respect

Hap, bra Hap, ;
T +77+6Lsa c2, where —2- < 0 from Lemma 6. Thus, given s,

H —1 dﬁz& dﬁm\_r
to s equals [(1—04)<H2L>

_1gHan
_ Hon Haop dra__ G : : f G TR : B
(1—a) < H2L> P —|—72+ 5, 5q lICTCASES with a, which implies that s maximizing co locally increases

dey 1
with a. Figure C1 illustrates the relationship between s and %— for small @ and large a. In this
s c

example, there are two values of s maximizing co locally, denoted by small circles, both of which
are higher when a is higher. Further, it cannot be the case that co when a is large is maximized
at the lowest of the two local maximizers and cs when a is small is maximized at the highest of
the two local maximizers, which implies that s maximizing globally co when a < e5; also increases
with a. The reason is that the ratio of co when a is large to ¢o when a is small increases with s from
(A9). The following example would help understand this. Figure C2 illustrates the relationship
between s and ¢y for two values of a. In the figure, because the ratio increases with s, when a is
small, ¢y is highest at the lowest of the two values of s maximizing cs locally, while when a is large,
co is highest at the highest of the two local maximizers.

The above argument is incomplete because for given a, whether a < e5; or a > €5; depends on
s. Figure C3 illustrates the relationship between s and e};. (As in the figure, it cannot be ruled
out the possibility that the relationship is non-monotonic and thus there exist multiple values of s
maximizing e}; locally.) In the region below the e3; profile, a < e3; and thus e = a hold, and in
the region on or above the profile, a > e3; and thus e = e5; hold. In the figure, s maximizing co of
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Figure C4: Relationship between s and e5;

local sector workers when a > e3; is denoted sp, which is smaller than s maximizing e5;, s*, from
(24) and (A12). The segment C'D of the thick dotted line passing through point D is the locus of
s maximizing ca when a € [ac,ap). When a < a¢, ¢z is maximized at s = 0. It is now proved that,
for given a, s maximizing cy of local sector workers is s on the thick dotted line. This is obvious
when a < ap and a > a*. When a € [ap, a*), s maximizing ¢z is s¢ because for given s, ca when
a > e5; is higher than ¢ when a < e3;, and ca when a > €5, is highest at s = s¢. Therefore, s
maximizing cp of local sector workers increases with a when a € [ac,ap). ®

Proof of Proposition 5. [Those who become local-sector workers] If the proportion of
individuals with relatively large wealth is very low, from Lemma 4 (ii)(d) (see Figure 5), e5; = 0 and
thus hay, = (I)7 hold for any s. Otherwise, from Lemma 4 (Figure 5), e5; = 0 and thus hoy, = (1)7
hold when s is very low or very high, which implies that hoy, is highest at an intermediate s.

The last part of the result is proved as follows. Figure C4 illustrates the relationship between
s and e};. (As in the figure, it cannot be ruled out the possibility that the relationship is non-
monotonic and thus there exist multiple values of s maximizing e}; locally.) In the region below
the e3; profile, a < e5; and thus e = a hold, and in the region on or above the profile, a > €5; and
thus e = e5; hold. Because hoy, = (Z + 6rse)? when a < e}; increases with s from e = a, for each
a such that a < e3; holds for some s, s that maximizes ha;, when a < e3; is on a segment of the
eh; profile represented by a thick solid line. By contrast, hor, when a > €3; increases (decreases)

with s when % o %+% > (<)0. Hence, s that maximizes hor, when a > e}; must satisfy

d—z*if‘ < 0 and thus is on the same thick solid line. Suppose, without loss of generality, that such s
is sg in the figure. Then, if one has a > ag, her hoy, is maximized at s = sg, while if a < ag, s
maximizing heoy, is on a portion of the thick solid line below the wealth level and thus s > sg. As
a decreases, such portion of the line shortens, thus s maximizing heoy, weakly increases.

From Figures C3 and C4, the s that maximizes hgy, is greater than the s that maximizes net
earnings and consumption.

[Those who become national-sector workers| For those who have enough wealth for

optimal education, 2L — dltbrsezn)” (1 + 6Lse§N)7*16L%. From (21),

ds ds
H-
d(se* ) * des * S Y 71dH2N
i R rait {”1—7 [‘E—a(i%i> 4
* 1—~— -1 dﬂz&
_ SN {—7 S s (%’ﬂ) ET } , (C37)
1—vy]| 1-s 2L ds
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Figure C5: Relationship between s and €5y

which is positive when s < 1—+. Hence, se}y and thus (I+081se}, )7 are maximized at s € (1—7, 1).
(Note that ey = 0 at s = 1.) Denote such s by sp and a that equals e}y at s = sp by ap. For
those with a > ap, hor is maximized at s = sp € (1 —~v,1).

For those with a < ap, the relationship between s and e, needs to be examined. For this
purpose, the result on ¢z of Lemma 7 and Proposition 4 can be used. This is because e} is

2L

1
al T—
proportional to [(1 s)Y (J;IIZN> } " from (21) and co when it is given by (30) or (A6) in Appendix

A——c; for any a in Case 1, ¢ for a > ap in Case 2, cp for a > €5, in Case 3, ¢p for a > @ in Case 4,

and ¢y for a > a in Case 5—is a linear function of [(1 s)Y (Iézlz ) a] o (when c9 is given by (30))
or of (1—s)7 (%JLE) * (when ¢ is given by (A6)).

When Ty, To, 6, and ér, are small or when the proportion of those with relatively large wealth
is very low, cp decreases with s for any a from Proposition 4 (i) and thus €}, decreases with s.
When a figure like Figure C4 is drawn for this case, e} is downward-sloping and equals 0 at s = 1.
From a similar logic to the proof for local-sector workers, for those with a < ap, s maximizing
hor, = (Z + 6rsean)? is on a portion of the e}, profile below the wealth level and thus s > sp. As
a decreases, the segment of the profile shortens and thus s maximizing hoy, weakly increases.

When Ty, 15, 65, and 61, are not small and the proportion of those with relatively large wealth
is not very low, cz and e decrease with s when e5; = 0 and they decrease With s for large s when
e5; > 0 from Lemma 7 (ii)(b). Further, dili” < 0 at s = sp from % 14+228 . Based on
these results, Figure C5 illustrates the relationship between s and €3,;. (As in the ﬁgure7 it cannot
be ruled out the possibility that the relationship is non-monotonic and there exist multiple values
of s maximizing e}, locally.) From a similar logic to the proof for local-sector workers, for those
with @ < ap, s maximizing hoy = (7 +6r.sean)” is on a portion of the e}, profile below the wealth
level and thus s > sp, and s maximizing he; weakly decreases with a.

deQN

As mentioned above, both ¢y of national-sector workers and €3, are linear functions of [(1 —3)7 <%> }

% +de2N and Figure C5, the s that maximizes hoy, is greater than the s that

maximizes e3, and thus net earnings and consumption. m

Hence, from
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