Appendix C (Online Appendix) Proof of lemmas and propositions
of the general case

Proof of Lemma 4. The result is proved by examining under what conditions each case is
realized.

(i) [Case 1: e5; = 0 and the indifference condition holds for those with a > €},] As
explained in Appendix A, g’élz is determined by (28) independently of the distribution of wealth,
as in the unconstrained case with e3; = 0. Thus, this case exists iff the condition for e3; = 0 in

Section 3 holds, i.e., when s < s or s >3, and, from (A3) in Appendix A, the following is true
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which can be expressed as
.
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Because the RHS of the above equation decreases with e}y and thus increases with s from (21)
and (28), for given F'(-), there exists a critical s € (0,1) such that the condition holds for greater s
or the condition holds for any s, if the RHS of the equation at s = 1 is strictly greater than the LHS,

ie, =2(1-9) < 1}1(?0()0) < F(0) < T{a)" (e5y — 0 as s — 1 from (21) and (28).) For given

s, the condition tends to hold when the proportion of those with adequate wealth for education is
high, i.e., F(e},) is low. Thus, the critical s, which is denoted by s*(F') € [0, 1), increases as the
proportion of those with adequate wealth is lower. (s (F) is set to be 0 when the proportion is
high enough that (C2) holds for any s.) Hence, the economy is in Case 1 if F'(0) < (=) and

either s € [sT(F), s] (when sT(F) < s) or s € [max{s,s"(F)},1].

[Case 2: e, = 0 and the indifference condition holds for those with a = @y < €3;]
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This case exists iff the condition for e}; = 0, v6psaTp*Ty1~ %ﬁ—’ (1)"~! <1 (in the proof

of Lemma 1), holds and the condition for ag < e, holds, which, from (A5) in Appendix A, equals
Hayn > [On(1—s)esn](1—F(e3n))
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This equation holds with equality when @y = e}, from (A5) and, as the proportion of those
with adequate wealth rises (i.e., F'(a) for given a decreases), ap increases and converges to e}

from the proof of Lemma 5 (ii). Hence, the above equation with ” =" divides this case and Case
1, which, from the proof for Case 1, can be expressed as
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From the proof for Case 1, when s < s or s >3, the critical s, s7(F), if exists (thus F(0) <

m must hold), increases as the proportion of those with adequate wealth falls, and given

F(), the economy is in Case 2 (Case 1) for s < (>)s*(F), while if F(0) > m, (C2) does not



hold for any s and thus Case 2 is realized for any s. Hence, when s < s or s > 3, Case 2 is realized

if F(0) > m or if s € [0, min{s*(F),s}] when s*(F) > 0or s € [5,s7(F)) when sT(F) > 5.

Unlike Case 1, the condition for e; = 0 holds for some ranges of s € (s,5) too. In particular,
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I-a % (I)'=1 = 1, if exists, is larger
than s (smaller than 3) and increases (decreases) as the proportion of those with adequate wealth

falls. (It is not clear if there exist more than two critical values of s.) This is because ngz’ decreases
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the smallest (largest) critical s satisfying v0rsaT>*Tn

as the proportion falls from Lemma 5 (ii) and thus 72X for given s is lower than Case 1.

Denote the smallest (largest) critical s by s(F') (8(F')). Then, if s(F') and S(F) exist, which
is the case when the proportion of those with adequate wealth is high enough (because s(F') and
5(F) respectively converge to s and S as the proportion rises), the economy is in Case 2 at least for
s € [0, min{s™(F),s(F)}) when s*(F) > 0 and for s € (3(F),s"(F)] when s™(F) > 5. (If critical
values other than s(F') and S(F') exist, some ranges of s € [s(F'),5(F)] too belong to this case.)

When the proportion of those with adequate wealth is low enough, 3(F') and s(F') do not exist
and the economy is in Case 2 for any s. This is because, as the proportion falls, ngz’ decreases
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and converges to 0 from the proof of Lemma 5 (ii) and thus v65saT5Ty'~® (%) 't<1

for any s.

(ii) [Case 3: €5, > 0 and the indifference condition holds for those with a > e},]
As explained in Appendix A, Z i2eys X (thus e}y and €3;) is determined by (29) independently of the
distribution of wealth, as in the. unconstramed case with e5; > 0. Thus, this case exists iff the
condition for e3; > 0 in Section 3 holds, i.e., when s € (s,5), and, from (A8) in Appendix A, the
following is true
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As the proportion of those with adequate wealth falls (i.e., F'(a) for given a increases), the RHS
of this equation decreases, thus the condition holds with equality when the proportion is lowest in
this case (for given s). Hence, the economy is in this case if s € (s,5) and the proportion of those
with adequate wealth is high enough that the above condition is satisfied.

[Case 4: e}; > 0 and the indifference condition holds for those with a =a € [}, ,€5y)]
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This case exists iff the condition for e}, > 0, vpsaTo*TN'™* (%) (I)"~! > 1 (in the proof
of Lemma 1) holds (thus s € (s(F),s(F)) must hold) and the condition for a € [e};, e}, ) holds,

which equals, from (A11) in Appendix A,
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As the proportion of those with adequate wealth rises, @ rises from the proof of Lemma 5 (ii).
Thus, when the proportion is supremum in this case, @ — e}, and 2N —
by (A—8)[(e3n) T (1-Flez ) from (A11). Hence, gzzv _ by (A—5)["e3n)"A-Flesy)
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divides this case and Case 3. Given s, the proportion of those with adequate wealth is lower (i.e.,
F(a) for given a is higher) than Case 3, because @ — €35 (@ = e3,) when the proportion is
supremum (lowest) in this case (in Case 3).
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At s = 5,5 and thus e3; = 0, the equation becomes T{g— — Bl S()Z)i }(S(ZN) (621\’)), the same as

Case 1. That is, the dividing line and s = s (F) intersect at s = s, 3.



[Case 5: €}, > 0 and the indifference condition holds for those with a = a < e}, ]
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This case exists iff the condition for e}, > 0, vpsaTo*TN'™* (%) (1)~ > 1 (in the proof
of Lemma 1), holds (thus s € (s(F'),35(F')) must hold) and the condition for a < €3; holds, which
equals, from (A14) in Appendix A,
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As the proportion of those with adequate wealth rises, a rises from the proof of Lemma 5 (ii).
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Thus, when the proportion is supremum in this case, a — €5, and £ A — ——— -
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Given s, the proportion of those with adequate wealth is lower (i.e., F'(a) for given a is higher)
than Case 4, because @ — €3; (a = e};) holds when the proportion is supremum (lowest) in this

case (in Case 4).

from (A14). Hence, 28 — divides this case and Case 4.
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When e5; = 0, the equation becomes %‘2—’ = 70O , which is
different from 228 — [5N(178)—62N]7(*17F(62N)), i.e., s = sT(F). Hence, the dividing line between Case
Hap, )Y F(e3n)

4 and Case 5 does not intersect with s = s7(F) and the dividing line between Case 3 and Case 4
at s = s, 5. This implies that when s is close to s or 5, Case 5 is not realized. m

Proof of Lemma 5. (i) As explained in in Appendix A, %21\—’ (thus e}, and e}) is determined
independently of the distribution of wealth by (28) [(29)] when e}, = (>)0. If the proportion of
those with adequate wealth falls (i.e., F'(a) increases for given a) so that the numerator of (A3)
[(A8)] in Appendix A decreases and the denominator increases when e}; = (>)0, pay must increase
for the equation to hold.

(ii) [Case 2: €5, = 0 and the indifference condition holds for a = @y < €};] Because

(0%
Tn(6n(1=8)do) — 1= (%f) ap increases with ag from @y < €5, the relationship between %22%

and ap satisfying (A4) in Appendix A is positive. Because e}, decreases with gzzlz from (21), the

relationship between %ﬁ‘;’— and ag satisfying (A5) in Appendix A is negative. When the proportion
of those with adequate wealth falls (i.e., F'(a) increases for given a) so that the numerator of (A5)

decreases and the denominator increases, %JLY- satisfying (A5) must decrease for given ag. Hence,

%2‘2—’ and ap decrease from (A4) and (A5). From the equations, when the proportion falls to the

point that F(0) — 1, H”LV — 0 and ag — 0, while when it rises sufficiently, ay — €3,;, which is the
H. 2N )

threshold of Case 1 (note that €3, decreases with
[Case 4: €, > 0 and the indifference condltlon holds for a = a € [€};,e},)] Because

Tn(Sn(1—s)a)Y — (Iq%zil) @ increases with @ from @ < e}, the relationship between %‘Z—
and a satisfying (A10) in Appendix A is positive. Because e}, decreases with ﬁzm from (21)

(2
and e}; increases with HzN from (24), the relationship between %2’ and a satlsfymg (A11) in

Appendix A is negative. When the proportion of those with adequate Wealth falls so that the
numerator of (A11l) decreases and the denominator increases, g (A11) must decrease

for given a. Hence, g“’ and a decrease from (A10) and (All). From the equations, when the

proportion rises sufﬁmently, a — e}y, which is the threshold of Case 3 (note that e}, decreases



and e5; increases with HZN ). By contrast, when the proportion and thus %JZ fall sufficiently,

either @ — €5, which is the threshold of Case 5, or the condition for e5; = 0 holds with equality,

-«
ie., yorsaTa®Tyt—@ (%) (I)’~! =1, and the economy shifts to Case 2.

[Case 5: e}; > 0 and the indifference condition holds for a = a < e3;] The relationship
between gZN and a satisfying (A13) in Appendix A is positive, while the relationship between ZZN

and a satisfying (A14) is negative because e, decreases with ZZIZ from (21). When the proportion

of those with adequate wealth falls so that the numerator of (A14) decreases and the denominator
increases, ngz satisfying (A14) must decrease for given a. Hence, %N and a decrease from (A13)

and (A14). From the equations, when the proportion rises sufﬁmently, a — eb; (note that e}y

decreases with Z?Z and e3; < e}, ), whereas when the proportion and thus HQN fall sufficiently,
lfa -
the condition for e}, = 0 holds with equality, i.e., Y6psaTy*Tn1 ™ (%) (l) ~t =1, and the

economy shifts to Case 2. m

Proof of Proposition 3 The result on human capital is from Lemma 5 and (12), (13), (21),
and (24). (i) Because Z: jeovs (i), net
earnings and consumptlon too do not depend on the distribution.

(ii) From Appendix A, consumption of those who have relatively large wealth and choose the
national sector is given by (30) for those with a > €5, and by (A6) for those with a < e}y, while
consumption of those who have relatively small wealth and choose the local sector is given by (A12)
for those with a > e3; (Case 4), and for those with a < e}; by (A7) (Case 2) and (A9) (Cases 4
and 5). Net earnings in unit of the final good equal consumption minus wealth.

Because %JLY- decreases as the proportion of those with adequate wealth falls from Lemma 5 (ii),
from these equations, consumption and net earnings of those who choose the local sector decrease
and of those who choose the national sector increase. Hence, consumption and earnings inequalities
between any pairs of national and local sector workers increase. ®

Proof of Lemma 6. As explained in in Appendix A, in Cases 1 and 3, HQJZ is determined by (29)
when e; > 0 and by (28) when e}; = 0, same as when everyone has enough wealth for education.
Thus, Lemma 2 applies.

In Case 2, as shown in the proof of Lemma 5 (ii), the relationship between %ZM and ap satisfying

(A4) in Appendix A is positive, and the relationship between g (A5) is negative.

For given @y, an increase in s lowers HZN satisfying (A4). From (A5) and (21), for given agp, an

increase in s lowers %‘;ﬂ satisfying (A5). Therefore, an increase in s lowers %‘Z—

In Case 4, as shown in the proof of Lemma 5 (ii), the relationship between If{fN and a satlsfymg
(A10) in Appendix A is positive, and the relationship satisfying (A11) is negative. For given a, an
increase in s lowers %JZ— satisfying (A10), because the derivative of the expression inside the curly
bracket of the RHS of the equation with respect to s equals

1 —
1 l—a|1— l
— {'ys[(’y(SLs)’YaT2aTNl—a (%21;) } (SL} >0 from (24).

From (A11), (21), and (24), for given a, an increase in s lowers II%JLV satisfying (A11), because the
derivative of sej; with respect to s equals
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Therefore, an increase in s lowers %N

In Case 5, as shown in the proof of Lemma 5 (ii), the relationship between g
(A13) in Appendix A is positive, and the relationship satisfying (A14) is negatlve For given a,

an increase in s lowers H22N satisfying (A13). From (A14) and (21), for given a, an increase in s

HzN
H

lowers HQN satisfying (A14). Therefore, an increase in s lowers ]

Proof of Lemma 7. Only the proof of the result on the consumption is presented, because net
earnings in unit of the final good equal consumption minus wealth. (i) [Case 1: the indifference
condition holds for a > e},/] Because ¢y for any a is given by (30) from Appendix A, Lemma 3
(i) applies and thus co decreases with s.

[Case 2: the indifference condition holds for a =@y < e};] Because I}{fz}z decreases with

s from Lemma 6, ¢y for a < ag decreases with s from (A7) in Appendix A. From (30) and (A6)
d . : LagAl :
in Appendix A, % for a > @y is proportional to — [ + a(féf;’) ZﬁL ] In the following,
o\ LAY
% + a(;ﬁ’) —2L > 0 is shown.

Totally differentiating (A4) gives
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where, by totally differentiating (21),
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When the first and third equations are substituted into the second one and divided by ds, the
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resulting equation consists of the term associated with 7 H +—d§L the one associated with
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where 2Ty (6x(1—8)a0)" — 15 (%) > 0 from o < €y

Totally differentiating (A5) gives
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Since 1—7—871212’— + oz—ZIZL— is the largest from —2L- < 0 (Lemma 6) and (A4), 7
Therefore, ¢y for a > ap decreases with s.

(ii) [Case 3: the indifference condition holds for those with a > e}y] In Case 3, as
explained in Appendix A, %JLY- is determined by (29) as in the unconstrained case. Since ¢y for
a > e3; is given by (30) as in the unconstrained case from Appendix A, Lemma 3 (ii) applies.

Since ¢y for a < e}; is given by (A9) in Appendix A,

ZHop
sH2L+a = > 0.
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Because 2L < 0 from Lemma 6, when « is sufficiently small, I =2 <0 for any s in this case.C!
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(from (A20) in the proof of Lemma 3),

where, from (24) and (A17) in the proof of Lemma 3),
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By substituting (C13) into (C12), (1 — «) (%2‘2’—) —2L 4 'szf—éLLejeLg—L is proportional to
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= (DT Bola(l—7)(1—s) (Bo—B1)+7 (s — @) B, (C14)
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where the last two equalities are from By = 61,5(7T2*Tn!~%)T-7 B;. Noting that the expression
inside the square bracket of (C14) is same as that of (A21) in the proof of Lemma 3 (ii), the proof
of the lemma applies.

CIThe result is proved under the assumption e}; > 0. However, as shown in Lemma 4, when s is very large or
very small, e5; = 0 holds. In proving the next proposition that is based on this lemma, whether e5; > 0 or e5; =0
depends on s is taken into account.



dc de
Hence, —2 <0 when s>« (also when s is close to 0 or s < « and close to «), and d—2 < 0 for
s

any s in this case when a(< e};) is sufficiently small or when T, 15, éx, and 6y, are sufficiently
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low that (1—«) (%2’;’) ZﬁL + iniﬁLLZZeL;L = G < 0 for any s. Further, when Ty, T5, 6y, and 6y,

d
are sufficiently large that G > 0 and thus % > 0 hold for not very small and not large s (Figure

S
d
A3) when a > e}, , % > 0 holds for such range of s when a < e3; as well, if a is sufficiently large
that(l—a)m_lﬁzz%—i- bra_ _ g (2L _ba ) 5 g
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[Case 4: the indifference condition holds for a =a € [e};, €5 y)]

(Results for a > a) From (30) and (A6) in Appendix A, % for a > @ is proportional to

Hyw\ L ele:m
— [fLs —i—oz(TélLy-) —dil} In the following, it is proved that l—iLs—i—a(T{ZMQ —72 > 0 and thus
dc - . .
2 <0 fora > a, when s > —=2—— or when Ty, Tb, and dy are sufficiently low. It is also
ds a+(1—a)y

H
proved that there exist ranges of s (< «) satisfying I—:Ls—i-a(gzlg % < 0 and thus d_32 > 0 for

a > a, when Ty, Ty, and 6y are sufficiently high.
Totally differentiating (A10) in Appendix A, one of the two equations determining @ and %zz-f,

gives
1
B B 1-a1— I
_%{1 SS”Y |:(76LS)FYQTQQTN1 a(%) :| +(:l++)y‘91$+a}d3
_1 H _1
l—a|1— = =N d=2NX l—a|1T—~ 7 R
ﬂ{—la”[(véLs)”aTz“TNl_“ ™ +$+a}—5§?f +%{(1—7>[<W5Ls>”aTz“TN1‘“ 6] +$—¥a}dﬁ=07
Hsyp,

(C15)

where (A10) is used to derive the term associated with ds and the expression associated with da
is positive from (A10) and @ < e
This equation can be expressed as
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Totally differentiating (A11) in Appendix A, the other equation determining a and I;I?Z , and

dividing the resulting equation by ds gives
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where, A; is a positive term, and, to derive the last equality, the following equations and (24) are
used.

desy o) AT |
N | a<ﬁ) Pei | B (from (21)), (C18)
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In the following, it is proved that this is the case when s >
sufficiently low.
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From the equation that is obtained by substituting (C16) into (C17) and eliminating
H.

L H.
SIh > if 2o ()

l—a|I— 7
71dH2N 1_35 {(75LS)'Y&T2QTN1&<H2N> w 7+—(1+7)871L
) Hyp ~

S

_'Y —1 l1—a|l1- 'de2N
+z}+1 (ﬁ) [oméLstaTNla(%gg—) } d2L> (from (24)),

1
l—a|I—y
H <
171’Y ’Va,Y(SLST2aTN1a<_Z.{\_7> “

+ 2N
- Har +alE -1 dH2L
H2L l-a s 1—a _li_'y H2L dS
OL’Y(S ST2aT 11— EZM
L N Hyp,
(C19)

da v

ds”’ lfs+
_1 gien
_Hop

) —g- s higher than other similar expressions in the equation

(63
> aFizay OF when Ty, To, and 6 are

0

Hsyp,
1—s

ds =

1—a
1— ay Hopn
{(WLS)‘*&Tf‘TNl a<H2L>




1
=7 Q4y)s-1 1

1-sy ( § S)'YOtT ap l-a Hon e
s | (L 2°TN oy

«

l-ay 1_of Han -
(Y6Ls)YaT TNy~ 0

1

_ 1 H l—a|1—
& (a—s)J—a(l—s)l <0, where J = ['y(SLsaTgo‘TN e (Hz];) } (C20)

Hon - . e _ _17HaN
() Ty a[ sy QHBses ey (F@ -~ F(es ) s (onsa)” 1“dF(a)]+a(—HzN_) plarms
- 2L S —S8

(Z+5L5€§L)7(F(A) F(e3r)) +JO2L(I+6LSG)‘*dF( )+ F(0)

04{1—7—84-’}’51; (_Z+5Lse2L)'Y 1iL(F(A) Fles, L+fO2L (+615a)7~ 1adF(a):| <
(+81s€5, )7 (F(@)—F(esy )+ oL (I4+6 1, sa)YdF (a)+ (1) F(0)
(I+6rsesr )Y tes, (F(a)— F(ezL +f02L(l+6L8a)'V 1adF(a) 1-a 1

(I+6rses, )Y (F(@)—F(es.)) +f02L (1462 sa)vdF(a)+()YF(0)
& (+6rses ) ol —pres, — L —a)l+61se3)(F (@) — F(e5,)

+/0€z (+6rsa) ol —96ra— (1 —afl+6saldF @ —(1L—a)l)"F(0) <0

& (I+6pses, ) [(a—s)bres, —(1—a)l|(F (@) - Flesp) +/062L(7+5L8a)7_1 [(a—s)6ra—(1—a)l]dF(@—(1—a)(l)"F(0)<0

@(Héweh)”*% {(a=s)J —a(1—s)l} (F(a)— F(e3r) +/0 eu(HaLsa)v*l [((a—s)6ra—(1—a)lJdF(@—(1—a) ()Y F(0) <0,
(C21)

where (24) is used to derive the last equation, and, as for the second term, (a—s)éra—(1—a)l <
(a—8)X(J-1)—(1—a)l = 1 [(a—s5)J—a(1—s)l] from (24).

o 11—« _1l_'y _
7o \L d%z.z\_f ) = ’V‘X'Y(SLSTZOLTN <TIZM> w H - 142
— H
s ra(fes) e > el o (Ha) e if
{a’yéLsTgaTNl o H > :l
—a f _
_a 1-—v ﬁ_”{awazaTNli (%ILM) } T <
—a s 1—a ﬁ — 1—s
{a’yéLstaTleo‘ (%2%) }
a 1 1 o l—a (Haon I—a ﬁ a 1-—v7
@’Y(Tag*l—) OZ’Y(SLSTQ Tn (H2L> +m 3 [ <0
& y(a—s)J +a(l—s)(1-7) < 0. (C22)
dﬂz.l\_f
From (C20), (C21), and (C22), 115+« (?227) gjL is higher than the other expressions if (C22)

holds. Because e}; > 0 <> J > [ from (24), this is true if v (o —s) + a(1 — s)(1 —7) < 0 & s >
m Further, (C22) is true for s > o when Ty, To, 65 and é1 are sufficiently low from the
following lemma.



1—
Lemma C1 (i) 15Ty~ a(gii’) ° increases with Tx, Ta, and 6. (i7) ngz decreases with y,.

11—«
Proof. (i) Suppose the contrary. Then, an increase in Ty, T, or §y lowers Ty~ (%) ,

which implies that 2212’ decreases. Then, a must decrease, since (A10) in Appendix A can be
expressed as follows.

_1 -
o 1—a [ H < ~ ~_ a 1—a ( H Tal=y l
(1—a)Tx°Ty (ﬁw) (5N(1s)a)va_uy)[(yaw)van Ty (Tlm ] t5 (023)

1—

Because a decrease in To%Tn'~® (II?QN) lowers e}; from (24) and a decrease in gzzlz and an

increase in Ty, Ty, or 6 raises e3y from (21), for (A11) to hold, @ must increase, a contradiction.
1—a

Therefore, To*Tn'—¢ (%212’) increases with Ty, Tb, and Oy .

(ii) The result holds because for given @, an increase in 6y, lowers gz;z satisfying (C23) (the

LHS of the equation increases with ¢1,) and HzN satisfying (A11). m
Hyy

1d dey
Therefore, —’Y—+a<ngz> HzL > 0 and thus d_ < 0 for @ > @ when s >
S

m, and if TN,
T5, 6 and 6, are sufficiently low, when s > a. y(a—s)J+ oz(l—s)(_—v)l < 0 when ¢, is sufficiently
low, because y(a—s)J+a(1-s)(1—=y) = (a—s) (6ses, +1)—a(l-s)l < (a—s)(6rsedy+1)—a(l-s)l,
where €3, increases with 67, from (21) and Lemma C1.

H. ds
the equation obtained by substltutmg (C16) into (%17), which is the case when (C21) holds with
">". Noting that e}; = gls(J — 1) from (24) and (C21) holds with ">" only if s < a, the LHS
of (C21) increases with J, because the derivative of the LHS of the equation with respect to J is
proportional to —ﬁl_T”l {(a—s)J—a(1—=s)l} + (a—s) > 0. Therefore, from Lemma C1, there exist
H.
ranges of s (< «) satisfying 1—“_L8+0z(71§2‘\—’%>_1d—_[§2§% < 0 and thus % > 0 for a > a, when Ty, Tb,
and 0y are sufficiently high.

Hyn Hyn
1d d
Similarly, i+a<l—1,§% —HZL— < 0 if —L—i-oz Han) —HZL— is smaller than other expressions in

d
(Results for a < e3;) From (A9) in Appendix A, % for a < e3; is proportional to (1 —
s

H -1 d d_ZMH dCz . . .
a) (A —i—'y—L— Since —ZL— < 0 from Lemma 6, <0 for any s in this case when a is
Hap, I+61, ds

sufficiently small.
For any a < €5,

1 Hon -t dlf'{fzi] éra 1 Hon ! dlf—{é]z 6Le§L 24
( 7a)<H2L) ds +fyZ—i—éLsa <( 7a)(H2L> ds +7?+§L8€§L‘ (C24)

In the foll it d that (1— )(ﬂw)ld%ﬁf+ 5. — 0 and thus %2 < 0. wh
n the following, it is proved tha ) (74 VTropees and thus — , when

s> ﬁ or when Ty, To, Oy and &y, are sufficiently low.

l-a|1—+
When s > a or when Ty, Ts, 6y and 61, are low enough that (a—s) [v&LsaTgaTNl_a (g%) } T

10



1_’Z ’V("yéLs)'yaTzo‘TN 1— a

deL >

Hsp,

a(l-s)l < 0 holds (Lemma C1),¢? I—’i/—s—l-a(Hﬂ s s

1_”1 e 11— Hon -
|:(75L5)70¢T2 Tn <H2L

'V 1+7817 N
) “ era

1—s

)71 Hon 1887{(751:5)7@7120‘711\/1 « HZN } FRES)Lee

>04|:ﬁ +76r,
l-ay ( 81,8)YaT2oT, -« Hon
o | (L) el TN = (7>

+5 e

1—a (Han\ % =
holds too, because (J= |yérsaTla*Tn —0<<LN) )

Hap,
1— J (A4y)s—1 1 4 - e
~ ssvfyéLer sy __ ors > 04|: 16 (I4+6pses; )Y Les, (F(@)— F(e2L )+ o 25 ( l+6Lsa)71adF(a):|
1=s 17—5)/-75‘184-%-}—@ 1—s (61565, )7 (F@)—F (e )+ Jo2E (1461, sa)dF (a)+ (1) F(0)
1+ l —~ *
1 (1_57)’Y5L8 L Sf 5L5+5a > Ol|: +(f+5Lse;L)'V*16Lse;L(F(a)fF(ezL))+jg2L(Z+6Lsa)7’15LsadF(a)
T g e L=s " (4+6Lse5,)1(F@)—F(esp))+ o >E (1+8Lsa)1dF (a)+(1)YF(0)
J  (Q4y)s—1 T | .
(1—sv) +——— 5 5 tsa 51 se n
1 6 6 J—1
eI e i) = o+ ) (from (20)
a 75Ls+5Ls+a
1 1+ 17 ~ (I-av) 5 35,5 7% s+aa_
& 1 {[(1 3’7)76Ls+7( Afy)s g—i-sa] — [(1_0‘7)7&3"‘0‘%3"‘0‘“]}2_ TLs—L l
< (a—esp) [(oz—s)J — a(l—s)l] <0 (from (24)). (C25)
3 * \y—1_% ~ 62L -1 —1gH2n
Hence, either Oz[l—z—s +761, (_lJréLsefL)'Y efL(F( a)— (€2L2L+] (I+6psa)” _adF(a)] + a(f[ii) ZﬁL or
(I+615e5,)7 (F(@)—F(e5 )+ fo 2E (1+8r,5a)dF (a)+(1)1F (0)
. l-a|T—y _
. 1J—7’VOLFY6LSTZQTN1Q<H22]L\T> W +1 - 1d—2M
= +0z<TIZM) —72L is lowest among the terms of the
2L S

{a’yéL sThoT 1l <T[§%

equation obtained by substituting (C16) into (C17). From the equation, the lowest term must be
negative.

-« 1 Yoo
: a l1—y 1_17 ’Va’YéLSTzaTN <H2L> W " Hon -1 d%zlz
If the latter is lowest, 9=~ +al ) —2- < 0. Thus,
o 177 2L o
|:a’y6LST2aTN1°‘ (g > :l
2L
Hyn * 3 1 7
(l—a)(ﬂﬂl)_l ngL o oresr < 1= igH +V§(J—l)
Hzr ds [+ bpses;, s 4 J

p 1—a|T—v
©2The inequality holds when 67, is sufficiently low, because for s < a, (a—s) [WéLsaTzo‘Tleo‘ @%) } ’ —a(l—

s)l = (a—s) (brsesr +1) — a(1—s)l < (a—s)(6rsesn + 1) — a(l—s)l, where esy increases with &z from (21) and
Lemma C1.

11

|

(6,55, )7 ety (F(@)— F(egL*))+f§§L(f+5Lsa)71adF(a):|
(+615€3,)7 (F(@)—F(e3,,)+fo 2L (+61sa)7dF (a)+(1) F(0)



7 _ H
Otherwise, a[fLs+75L (H8pses ) e, (F(@)—F(ez,) Dt [S2E (146, sa)7~ ladF(a):| —i—oz(M) 1 deIélz_ “0

(1+815¢5,)7 (F (@)~ F(es)+ o 22 (148 5sa)7dF(a) + (7 F(0)]  \T2E
Thus,
H * —
(1—(>z)(ﬂm>_ldH2;LV UG TR —(1—a)[—7—+75 (+orses, ) " es) (F@—F(e3,)) [ (+8150)~ 1adF(a)]+1J -
HaL ds [ +érsel; 1=s (I+6rses, )V (F(@)—F(esr)) +f02L(l+5Lsa)'YdF(a)+(l)’YF() s

which is negative when s > ﬁ or when T, Ts, 6 and 6y, are sufficiently low (Lemma C1).

Therefore, (1—a) Hw*ldf’u+ LB () and thus 92 < 0 for a < ¢, when s > 2
ererore, (6% Hor l+6LS€§L an us ds or a 62L wnen s ~ o or

when Ty, Ts, 65 and 67, are sufficiently low.

(Results for a € [e};,a)) Finally, from (A12) in Appendix A, des

ds

—i—l} —% < 0. The result can be proved following a similar step as the above

< 0 for a € [e3;,a) if

o)

e

1
l—a|T— _
r— O{’Y(SLSTQOLTNlia (ﬁz&) “ +1

1
l—a| T—v
{a’Y&LsTQO‘TNla (HH2212> :|

dc . _
proof of d—32 < 0 for a < €5;. In particular, when o 1= +

l-a s

o\~ LAY
2N 2L
oz(—HZL) — <0,

H. Ay S
(1—01)(M> 2 e e G
Hap ds s s J S
1
P j<0’

7 el _ H
and when o |:L +~61, (Itopses )" et (F(a) F(ezL )+ Jo 2E( l+5Lsa)“’1adF(a):| +a(m> 1 dﬁg‘% <0,
e (+61.5€3,)7(F@)~F(e3, )+ Jo °F (61 sa)1dF (o) + (D)7 F(0) fz @

1 Han 7 _ o -
(1—&)(1%2% 1dH—2L —1—1 £_£<{_(1—a)|:ﬁ+6L (_l+6Lse§L)77162L(F(“) Fezr) )+ Jo HéLm)wladF(a)} +1}J—£
2)  ds | s|y s (+615e5,)7 (F@)—F(es, )+ Jo2E (1461, sa)7dF(a) ()7 F(0)] S s

< é{lis (2= a)s+1] J—Z}, (C26)

which is negative when s > ﬁ or when Ty, Ts, 6, 01, are sufficiently low from Lemma C1.
[Case 5: the indifference condition holds for a =a < €3]

- d ~
(Results for a > a) From (30) and (A6) in Appendix A, % for @ > a is proportional to

fot -1 d%ﬂi o 1 dlli_llzN
_ [fLs —i—a(ﬁg—) —3 } In the following, it is proved that 7 —i—oz(ﬁ) —32 > 0 and thus
d dea
% < 0 holds for a > a, when s > « or when Ty, To, 6y and 6, are sufficiently small, and — > 0
s

holds for not large s (< «) when Ty, T, and 6 are sufficiently large.
In order to prove the result, the following lemma is used.

12



Lemma C2 (7) IJL{IZIZ and a increase with Ty, T, and dn. (i) ngz decreases with 87,

Proof. (i) Suppose the contrary. Then, an increase in Ty, Ts, or §y lowers I}{fN , which implies

that a decreases from (A13) in Appendix A. Because an increase in Ty, T5, or 8§ ~ together with
a decrease in 1}11221;; raises e}y from (21), for (Al4) in the appendix to hold, @ must increase, a

contradiction. Therefore, %ﬁ—’ and @ increase with T, T5, and 6p.
(ii) The result holds because for given a, an increase in 67, lowers both % satisfying (A13)
and 2N % satisfying (Al4). =

Totally differentiating (A13), one of the two equations determining a and TI%LY-, gives

__ 1l Hyy v I+6ra Hon
’ya(lﬂiLsﬁ) Hyp ¥ = 15 I+61,sa Har ds + dHZL (C27)

Totally differentiating (A14), the other equation determining a and , gives

1 fO (I+61,50)Y 161, sadF(a) Hon Hyy [éN(1—5)}7762N7’1(1—F(82N)) *
< s S T (onsayrdFla)s ()m(o)) Hoy @+ CH — e s sayrdr @Gy (o) 2N

on (1= { [ o 50 dr (@)@ + iy 0= Fles )+ 122N avar (@) (o say | ar @)

— - 3 da = 0, (C28)
[/ @+61.50)dF (a)+@)1 F(0)]
where, from (C10), .
Hon\ g H. e
desy = — [1—2—8ds +a () dﬁ] =9 (C29)
If the first and third equations are substituted into the second one and divided by ds, the result-
2N B
ing equation consists of the term associated with 77 llr; LLS‘Z gz;z + H2L = fy(ﬁ—i—z féﬁ;’d) gz]; +
q2an Y1 qtan
21 . . 1 fo (I+61sa)Y~ 16 adF(a) Hon
—72L-, the one associated with (1_5 =+ T2 (+onsa) dF (@) + ()7 F(0)) For + —ZL— , and the one associated
_14Han 1 dton
with = + a(%i‘l—) —g;”*— = a(%ifz—) é%ﬁ+—”‘ . The first expression is greater than

the second one because
_a _ Jo (1+615a)Y ~LadF (a)
I+b6psa ™ [ (1+6Lsa)VdF(a)+(1)7F(0

& /a(z—i-éLsa)”_l(Zi—a)ZdF(a)—i—(Z)’YF(O)E > 0.
) 0

Hyy
i} —1q72N
1 2 Hoy Y I+épa Han _ = _ a2 Hon) " “Hap
Hence, when 215 2% > {5 72kt 28 & (0 — s)dpa < (1 — a)l, 725 + a7 72 > 0.

(a—s)opa < (1— oz)l holds when s > « or when
(a—s)bres; < (1—a)l

" l—a|1T—+
& (a—s)J —a(l —s)l <0 (from (24)), where J = ['yéLsaTgaTNl_a (gi’-) } ,

which is true when T, T>, and é are sufficiently small from Lemma C2.

(= s)opa < (1 — a)l holds when 67, is sufficiently small as well, because it is true if (a —
s)dresy < (1 — )l, where €3 decreases with H”Iz’ and HQN decreases with 6y, from Lemma C2.
fo (I+6psa)’— 15LadF(a) fo (I +6psa)Y~ 16 adF(a)
JE(A+6psa)YdF(a)+(1)YF(0) — JE(A+8Lsa)YdF(a)+(1)YF(0) —
fg (I +6sa)Y~ 16 adF(a)

J&(1+61,5a)YdF (a)+(1)7F(0)

From the above analysis, when T2-+ 1L

1dH2N

dco
]‘?To‘ﬁ —7— + a(ﬁu) —ZISZL < 0 and thus s > 0. Because

increases

with @ from
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s (+6rsa) P (a)+ @) F(0) (I+61sa) 6 padF (@)~ fy(I+6150) '8 adF(a)(I+615a)dF (@)

= (I+6,53)" dF ()51, {[foa(ZMLsa)vdF(a)+(Z)7F(0)} a— [foa(HéLsa)HadF(a)} (Z+5Lsa)} >0,

the inequality holds when T, T3, and ¢y are sufficiently large from Lemma C2. The inequality and
Nfoa(f+5Lsa)'V*16LadF(a) _1 jo (1+6p5a)Y~ 16 sadF(a)
foa(f+5Lsa)“de(a)Jr(Z)“YF(O) s fo (I+61sa)YdF (a)+(1)YF(0)

thus %82 > 0 could hold only for s < «, since

1
5" d
(Results for a < a) From (A9) in Appendix A, % for a < @ is proportional to (1 —
s
— d H2N d
a)(%w> —ZL—i—'y—L—. Since —2L < 0 from Lemma 6, 2 20 for any s in this case when
2L I4+6r, ds dS

a is sufficiently small.
H 2N Hon
fo (I+61,5a)Y 18 adF(a) H2N+ H2L rl—'Y— +dH2L
[+ sa)7dF (a)+(1)7F(0)) HaL al- HZL ds

is the smallest among the similar expressions in (C27), (C28), and (C29) and thus is negative. This

From the above analysis, either ~ <— +

H2N
implies 1—1—5%22% + —22L < 0. Hence, for any a < @,
-1 dHZN ora 1-— a
l1-« (M> for L < ( >
( v ds Pyl—i-éLsa 15 l+(5Lsa

(1- )(l+6Lsa)[ ( l (SLSCL) (1*5)5[/(1]

- m{[—@—a)sﬂ] Spa—(1—a)l},

which is negative when s > 5=—. When s < 5= a,
—1 dﬂz.z\_f (S _
_ Hon Hor, La ol _(9_ (11—
(1-o)(f) 22 T brsa < G (- (2-a)st1]ore—(1-a)i}
< 7(178)({161:%) {[—(2—a)s+1] dresr — (1—a)l}

m%m{[—(Q—a)s—i—l] J— (1—3)7} (from (24)),

H.

182N
which is negative when T, Tb, and ¢y are sufficiently low from Lemma C2. (1— a)(%) H2L +
'ylf;asa < 0 when 67, is sufficiently small as well, because [—(2—a)s+1]6pa—(1—a)l < [—(2—a)s+ 1)6r.€e5n—

(1—a)l, where e, decreases with %21\—’ and %ZM decreases with 67, from Lemma C2. =
2L 2L

Proof of Proposition 4. Only the proof of the result on the consumption is presented, because
net earnings in unit of the final good equal consumption minus wealth. (i) From Lemma 7 (i),
consumption of any (group 2) individual decreases with s when €5, = 0. From (ii) of the lemma,
it Ty, T», 6N, and 67, are low, it decreases with s when e5; > 0 too. Hence, from Lemma 4 and
Figure 4, consumption of any individual decreases with s for any s, if the proportion of those with
adequate wealth is low enough that Case 2 is realized for any s or if Ty, 15, 65, and 67, are low.

(i) From Lemmas 4 and 7, consumption of any individual decreases with s for small s (when
s is small enough that e}; = 0 holds) and large s.

(a) From Lemma 7 (ii)(b), when Tn, T5, 6y, and 61, (in Case 3) are sufficiently high, there
exist ranges of s over which consumption of those with relatively large wealth increases with s, if
such ranges of s are effective, i.e., if e5; > 0 is true.

14



[Case 3 for intermediate s] When Case 3 is realized, as explained in Appendix A, g”z is

determined by (29) and ¢y for those with a > €3; is determined by (30) as in the unconstrained case.

d
Hence, Proposition 1 (ii) applies and thus ranges of s over which 922 - 0 holds are effective for such
s
individuals when T, T», 6y, and 6y, are sufficiently high. As for those with a < e; , from the proof

d
of Lemma 7 (ii), % > 0 for some ranges of s, if Ty, T, én, and 6, are sufficiently high, e5; > 0
S
—1 gHan X
is true, and a is sufficiently large that (1 — «) (HZJLV) H2L + ’sta =G —v (7;2;& — me) > 0,

1 422N
where from (C14) in the proof of the lemma, the sign of G = (1—«) (gz;z) —L —i—'yH_s is same
2L
as that of (A21) in the proof of Lemma 3 (ii). Hence, the proofs of the lemma and Proposition 1

d
(ii) apply and ranges of s over which a2 > 0 holds are effective when Ty, Ts, 65, and &, are high

enough that the supremum of s satisfyi%g G > 0, Smax, is sufficiently greater than s.

When Case 3 is realized for intermediate s, ca of individuals with a > e3; when e3; > 0 and
thus s is intermediate is given by (30), while their consumption at s = 0, at which Case 1 or 2 is
realized (Figure 5), equals or is smaller than the value of (30).“® Hence, ¢, when s is intermediate

. . Hon Y (H. .
18 greater than c2 at s = 0 if (1_5)’y (HQL ‘lntermedldte s) > (Hz;z ‘s:O)

When Case 1 is realized at s = 0, Proposition 1 (ii) applies and c¢3 is highest at intermediate s, if
Ty, Ts, On, and 6, are sufficiently high. When Case 2 is realized at s = 0, unlike the unconstrained
case, féN and ap at s = 0 are determined by (A4) and (A5) in Appendix A, while HzN when s is
intermediate is determined by (29) as in the unconstrained case, which can be expressed as

1 1 -
o 1—a\ T2 Hon —ot= H. e = —1 :
( ’YT2 TN ) {|:(1 04)[61\](1 S)] <H2L |intermediate s) :| - |:04(6L5)7 (ﬁ%%hntermediate s) :| }— 1_’7@.
(C30)

—Q —Q
By substituting (1—s)” (% |intermediate 8) > (ngz |s:0> into the above equation,

1 1
1 —a —Q 1— o o e T 1 i
ww([TfTNl (sloca) "=y = fem e () alonsr (1-9)7) )<——

1—véps’
(C31)
This condition holds if the LHS of the equation is negative, i.e.,
1
1 — .
|:<H2L |s= 0) (1—04)(57\]] — [Oz((SLS)’Y(l—s)%]l 7 <0. (C32)

Because H2N %|s=0 does not depend on 6y, from (A4) and (A5), the above condition clearly holds

when 6y, is sufﬁ(nently large. It can be proved that £ 2 22N | increases with T, Ts, and 6y from
(A4) and (A5). Hence, the condition holds when T and 7% are sufficiently large.

1
The condition holds when ¢ is sufficiently large if ag increases with 6 7, because (gﬁfz \szo) (57\,
must decrease with 6 from the following equation, which is obtained from (A4) at s = 0.
dnag)” 1 1 R -
Ono) _ “_qay (C33)

Hon 1— a0~
7 s=0 O (T )= (Ty)e (HzL e ()

11—«

“*When Case 2 is realized, co at s = 0 could be given by either (30) (when a > e3y), (A6) (when a € [do, e3n)),
or (A7) (when a < @g), because e3;, when s is intermediate could be smaller than e5yn or ap at s = 0. Because
wnhsy — Peesn > wnhen — Paa for a € [ao,e5n) and wyhsy — Peesny > warhar for a < @ (note e5;, = 0), c2 of
(30) is greater than that of (A6) or (A7).

15



—0) Opn
must decrease with 65 from the following equation, which is obtained from (A5) at s = 0.
-1 e
(B1m) 8k [(e3n) (1= Plen) + f2 (a) dF (o)
()Y F (@) ’

If @y decreases with 6 y,the condition holds when 6 is sufficiently

(C34)

* s ; Hon 1oy Hon o
where €3, increases with ( T \szo) o ( T |s:0> from (21).
Hence, when Case 2 is realized at s = 0, co is highest at intermediate s, when Ty, 1>, 0, and
01, are sufficiently high.
[Case 4 for intermediate s] When Case 4 is realized for intermediate s, from the proof
of Lemma 7 (ii), co of those with a > @ increases with s for some ranges of s(< «), if Ty,

T, and 6 are sufficiently high that (C21) in the proof holds with ">", which is the case only
- l—a|1T—+
when (a—s)J—a(l—s)l > 0, where J = [fysoszaTNl_a (%22’) } 7, and e3; > 0 is true. Since

e3; >0« J > from the proof of Lemma 1, e5; > 0 is true when (a—s)J—a(1—s)l > 0.

When Case 4 is realized for intermediate s, from Appendix A, ¢y for those with a > €3, when
s is intermediate is determined by (30), while their consumption at s = 0, at which Case 1 or 2
is realized (Figure 5), equals or is smaller than the value of (30) (footnote C3). Hence, ¢ when s

Hap,
and other parameters, %hntermedia‘ce s in Case 4 is smaller than the one in Case 3 from Lemmas
4 and 5, where the proportion of those with adequate wealth for education is higher in Case 3.
Similarly, given s and other parameters, gz;z |s=0 in Case 2 when the distribution of wealth F'(a)

— —Q
is intermediate is greater than co at s = 0 if (1—s)7 (%hnmmediate 8) > (HzN \szo) . Given s

is that of Case 4 is smaller than when F(a) is that of Case 3 and <H2N |s= 0) “ in Case 1. Thus,

—Q — QY
(1—s)7 (%?Z—\intermediate S) > (%ﬁ 8:0> is true when Case 4 is realized for intermediate s, if

(1—s)Y (%%\mtermediate s) in Case 3 is greater than ( oy |s= 0) in Case 2 when F'(a) is that of

Case 4. From the proof of Case 3 above, this is true When Twn, Tz, 6N, and 61, are high enough.

From Appendix A, cp for those with a € [a,e}y) when s is intermediate is determined by
(A12), which equals (30) at a = e},. Hence, when T, T3, 6, and 61, are sufficiently high that c;
of those with a = €3, when e3; > 0 is highest at intermediate s, it is also true for sufficiently large
a € [a,e;y).

[Case 5 for intermediate s|] When Case 5 is realized for intermediate s, from the proof of
Lemma 7 (ii), ¢z of those with @ > @ increases with s for some ranges of s(< «), if Ty, Ts, and 6y are
1 fO (1461, 5a) V=161 sadF(a) > l-a_1 1 fél(Z—}—éLsa)“ffléLsadF(a)

sufficiently high that > T (ogsaydF(a )+(l)7F( ) > =41~ Because - l+6 i~ 5 [2(I16psa)rdF(a)+ (1) F(0)
e*

from the proof of Lemma 7 (ii), l+6 5 > “a 1 bolds. Since €5, > a, this implies 2§€2L

]‘jTo‘ﬁ and thus e5; > 0 is true.

When Case 5 is realized for intermediate s, from Appendix A, co for those with a > €5, when
s is intermediate is determined by (30), while their consumption at s = 0, at which Case 2 is
realized (Figure 5), equals or is smaller than the value of (30) (footnote C3). Hence, ca when s is

intermediate is greater than cy at s = 0 if (1—s)? (%%\mtermediate s) : > (%g—\s:o) a. The rest of
the proof is similar to the case in which Case 4 is realized for intermeidate s.

From Appendix A, ¢, for those with a € [a, €5,;) when s is intermediate is determined by (A12),
which equals (30) at a = €3,. Hence, when T, T3, 6y, and 6y, are sufficiently high that ¢y of those
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Figure C2: Relationship between s and ca when a < e5; for large a and small a

with a = e}, is highest at intermediate s, it is also true for sufficiently large a € [a, e3y).

[s maximizing c; of local sector workers] When ¢y is maximized at intermediate s, s
maximizing ca of national sector workers does not depend on a from (30) and (A6) in Appendix
A, and s maximizing ¢y of local sector workers when a > €3; does not depend on a from (A12) in
Appendix A. By contrast, ¢ of local sector workers when a < e3;, which is realized in Cases 3—5,

l—a _
equals aTp*Ty!~ (%ﬁ’) (I + 6rsa)? from (A9). The derivative of consumption with respect

1d7{211 d%zm
to s equals [(1 a)(ﬁ”}j) —2 +’yl+5 —| ¢, where —72- < 0 from Lemma 6. Thus, given s,
_ H2N
(1—a) (%i%) —R2L oy Lt o 6 — increases with a, which implies that s maximizing cz locally increases

dey 1
with a. Figure C1 illustrates the relationship between s and &2 2 for small a and large a. In this

example, there are two values of s maximizing co locally, den(ftecé by small circles, both of which
are higher when « is higher. Further, it cannot be the case that ca when a is large is maximized
at the lowest of the two local maximizers and c2 when a is small is maximized at the highest of
the two local maximizers, which implies that s maximizing globally ca when a < e3; also increases
with a. The reason is that the ratio of co when a is large to ¢o when a is small increases with s from
(A9). The following example would help understand this. Figure C2 illustrates the relationship
between s and co for two values of a. In the figure, because the ratio increases with s, when a is
small, co is highest at the lowest of the two values of s maximizing cs locally, while when a is large,
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Figure C3: s maximizing co of local sector workers

co is highest at the highest of the two local maximizers.

The above argument is incomplete because for given a, whether a < e3; or a > e3; depends on
s. Figure C3 illustrates the relationship between s and e};. (As in the figure, it cannot be ruled
out the possibility that the relationship is non-monotonic and thus there exist multiple values of s
maximizing e}; locally.) In the region below the €3, profile, a < e}; and thus e = a hold, and in
the region on or above the profile, a > €5; and thus e = e3; hold. In the figure, s maximizing cy of
local sector workers when a > e3; is denoted sp, which is smaller than s maximizing e3;, s*, from
(24) and (A12). The segment C'D of the thick dotted line passing through point D is the locus of
s maximizing c2 when a € [ac,ap). When a < a¢, ¢z is maximized at s = 0. It is now proved that,
for given a, s maximizing cz of local sector workers is s on the thick dotted line. This is obvious
when a < ap and a > a*. When a € [ap, a*), s maximizing ¢z is s¢ because for given s, co when
a > e3; is higher than co when a < e5;, and c2 when a > e5; is highest at s = s¢. Therefore, s
maximizing co of local sector workers increases with a when a € [ac, ap).

(b) In Cases 1 and 2, ¢p decreases with s from Lemma 7 (i), and in Case 5, when a is sufficiently
low, co decreases with s from Lemma 7 (ii)(b). As for Cases 3 and 4, the proof of Lemma 7 (ii)(b)
is valid as long as e3; > 0, which is not true when s is very high or very low, as shown in Lemma
4. Here, the result is proved by taking into account how s affects whether e3; > 0 or e3; = 0.

[Case 3] As for Case 3, the proof of Lemma 7 shows that ¢y for a < €}, decreases with s when
a is sufficiently small. Because e5; =0 when s >3 or s < s from Lemma 4 (see Figure 5), for any
positive a, a > e5; holds when e5; > 0 and s is close to 5 or s. Hence, it must be proved that co
for a > e5; when e5; > 0 and s is close to 5 or s decreases with s.

The proof of Lemma 7 shows that co for a > e3; decreases with s for s > . From Lemma 1,
$>1—7(1—a). Because a < 1 — (1 — ), the consumption decreases with s for any s € [«,s).

From (A23) in the proof of Lemma 3, when s < «, % < 0 iff
s

a l+a- (1—a) -« 7
Yo 11—« %7 N ¥ % (aéL)ﬁ S ! 7(1*5) 1= (ais) [
B S S s =T (= r e =
1+a2= (1—a) -« 1=y 7
ypiag 1—afrq1 Y 1l—a| (adp)” S v ! 7(1_5) ' (04—8) L 1—v
< IPRIbY [(1 a)(SN] [(1,7)177}&[7(1 7)] [ {a—[’y(l—a)—i—a]s}l*a <(6L)
—V (=) -
<:>(6N)’y(1—a)(5L)1—'y(1—a),y(17,}/)(1—7)(1—01)(0/11)0[[(17a)TN]1—oz81—’y(1—oz) (1 S) (04 5) <(l)1_’y.

aa(I*V) {a— [fy(l —a) —|—Q{]5}(1*a)(1*’7)
(C35)
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From (A15) in the proof of Lemma 1, e}, > 0 iff
(6n)707 () 0 (10 ) [ (1—a) T s 707 (1= )7 07 > ()17, (C36)

. —5)"%(a—s 1=y —3) " *(a—s
The LHS of (C35) equals that of (C36) times [ao‘{oz—(l[’y(l)—a)(—ka}s)}(l*a)] . aa{a—(l[—y(l)—a)(Jra}s)}(l*a)

decreases with s for s < a because
o 1 (-a)b0-a)td
1-s a—-s a—[y(l-a)+als
[0t | h(-a)ta]
= - T )
—(14+a—-s){a—[y(1—a)+a]s} + (1 — s)(a—s) [y(1—a)+q]
(1-=39)(a—s){a—[y(1—a)+a]s}
—(1-5)+v(1-a)
(=s){a-9{a—h—a)tals}

=(1-a)

=(l-a)«a

Further, — {af(:tfy_(sl):;)(ia_]?}(lf‘l) =1at s = 0. Hence, — {afl[%i)::)(zo_@?}(lfa) <1 for s € (0,).

d
This implies that when e3; > 0 and s is close to s, % < 0.
S

[Case 4] In Case 4 too, the proof of Lemma 7 shows that ¢ for a < e}; decreases with s when
a is sufficiently small. Because €3, = 0 when s is very low or very high from Lemma 4 (Figure 5),
for any positive a, a > e5; holds when e5; > 0 and s is close to the threshold s below or above
which e}; = 0. Hence, it must be proved that ¢ for a € [e3;,a) when e}; > 0 and s is close to the
threshold s decreases with s.

dca
From the proof of Lemma 7, — o5 < 0for a € [e5;,a) when s > 5=—. When s < 5=, from (C26)

in the proof of the lemma, 2 < 0 if {1;[~(2=a)s+1]J~T < 0. When ¢, — 0 & J — 1 (from
the proof of Lemma 1), Cfics < 0 because T [—(2—a)s+1] J—1 — = (1704)3416;3]7(175)7 < 0. Hence,

d
% <0 for a € [e};,a) when e}; > 0 and s is close to the threshold s. m

Proof of Proposition 5. (i) (a) If the proportion of individuals with adequate wealth is very
low, from Lemma 4 (ii)(d) (see Figure 5), e5; = 0 and thus hay = (1) hold for any s. (b)
Otherwise, from Lemma 4 (Figure 5), e5; = 0 and thus hog, = (I)7 hold when s is very low or very
high, which implies that hoy, is highest at intermediate s.

The last part of the result is proved as follows. Figure C4 illustrates the relationship between
s and e};. (As in the figure, it cannot be ruled out the possibility that the relationship is non-
monotonic and thus there exist multiple values of s maximizing €}, locally.) In the region below
the e3; profile, a < e3; and thus e = a hold, and in the region on or above the profile, a > €5, and
thus e = €5; hold. Because hoy, = (Z + 6rse)Y when a < e}; increases with s from e = a, for each
a such that a < e5; holds for some s, s that maximizes hoy, when a < e3; is on a segment of the
es; profile represented by a thick solid line. By contrast, hoy, when a > €3; increases (decreases)
dises,) 1 des,

ds s ds
—2L < 0 and thus is on the same thick solid line. Suppose, without loss of generality, that such

with s when > (<)0. Hence, s that maximizes hoy, when a > €3, must satisfy

S
s 1s sg in the figure. Then, if an individual has a > ag, her hsoy, is maximized at s = sg, while if
a < ag, s maximizing hoy, is on a portion of the thick solid line below the wealth level and thus
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Figure C4: Relationship between s and e,
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Figure C5: Relationship between s and ey
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s > sg. As a decreases, such portion of the solid line shortens and thus s maximizing hs; weakly
increases.

1
(ii) Note that e}, is proportional to [(1—5)7 (%22%) } " from (21) and ¢y when it is given by

(30) or (A6) in Appendix A—cy for any a in Case 1, c3 for a > ag in Case 2, c3 for a > e}, in Case

~ . . . . —al T-y
3, cg for a > @ in Case 4, and ¢y for a > a in Case 5—is a linear function of [(18)7 (%) }

Hsp,
of Lemma 7 and Proposition 4 can be used to prove the result.

(a) Because ¢y decreases with s for any a when T, T, 65, and 61 are small or when the
proportion of individuals with adequate wealth is very low from Proposition 4 (i), e}, decreases
with s under such conditions. Since hoy = [dn(1—5)edy]Y for a > el and hoy = [0 (1—s)a]” for
a < e5n, hany decreases with s for any a under these condiions.

(b) Because ¢y and thus e}, decrease with s when e}; = 0 from Lemma 7 (ii)(b), hon decreases
with s for any a when e5; = 0.

Based on this result and the result that co and €5, decrease with s for large s when e5; > 0
(Lemma 7 (ii)(b)), Figure C5 illustrates the relationship between s and e}y. (As in the figure,
it cannot be ruled out the possibility that the relationship is non-monotonic and thus there exist
multiple values of s maximizing e}, locally.) In the region below the e}, profile, a < €}, and
thus e = a hold (as long as a is greater than the threshold wealth level for sectoral choice), and in
the region on or above the profile, a > e}, and thus e = e}, hold. Because hon = [On(1—5)e]?
when a < €5, decreases with s from e = a, for each a such that a < €5, holds for some s, s that
maximizes hoy when a < e3y is on a segment of the e, profile or a segment of s = 0 represented
by a thick solid line. By contrast, hony when a > €5, decreases with s when e5; = 0, because cz
and thus €5, decrease with s from Lemma 7 (i), while when e3; > 0, it increases (decreases) with

* * * *
s if d((1=5)bw) x L +d62N > (<)0, which implies that deay < 0 when M =0.

ds i ‘71*8 ds ] Cds ds
Hence, s that maximizes haoy when a > €5, is on the same thick solid line.

From the figure, if an individual has a < ag, hoy is maximized at s = 0, while if she has
a > ag, haon is maximized at s = 0 or at s on a portion of the thick solid curve below the wealth
level. (When a > ag, hony could be maximized at s = 0, because €3, at s = 0, which equals ao,
could be greater than (1 — s)esy when ely > ag.) If T, T3, 6N, and ¢, are sufficiently high, from
Proposition 4 (ii)(a), c2 and thus e}, are maximized at intermediate s. Hence, (1 — s)e}, and thus
hon when a > e, are maximized at intermediate s when T, T3, 0y, and 67, are high enough.
Suppose, without loss of generality, that such s is sp in the figure. Then, if an individual has
a > ap, hay is maximized at s = s, while if she has a < ap, s maximizing hoy is on a portion
of the thick solid curve below the wealth level and thus s < sp. As a decreases, such portion
of the solid line shortens and thus s maximizing hoy weakly decreases. At some a, hon at such
intermediate s becomes smaller than hoy when e = €3y at s = 0, and s = 0 maximizes hoy for
smaller a. (When the critical a below which s = 0 maximizes hoy is smaller than the threshold
wealth level for sectoral choice, intermediate s maximizes hon of those who choose the national
sector.) When T, T3, 6N, and 6y, are sufficiently low, (1 — s)e3, when a > e}y is smaller than
e5n at s =0 and thus s = 0 maximizes hoy for any a. ®

(when ¢3 is given by (30)) or of (1—s)7 (ﬂmi)_a (when ¢y is given by (A6)). Hence, the result on cy
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