
 

 
 

 

Kyoto University, 

Graduate School of Economics 

Discussion Paper Series 

 

 

 

 

 

 

 

 

Heterogeneous Treatment Effects of Nudge and Rebate: 
 

Causal Machine Learning 

in a Field Experiment on Electricity Conservation 

 

 

 

 

Kayo Murakami, Hideki Shimada, Yoshiaki Ushifusa, Takanori Ida 

 

 

 

 

Discussion Paper No. E-20-003 

 

 

 

 

 

Graduate School of Economics 

 Kyoto University 

Yoshida-Hommachi, Sakyo-ku  

Kyoto City, 606-8501, Japan 

 

 

 

September, 2020 
 



 

 

Heterogeneous Treatment Effects of Nudge and Rebate: 

 

Causal Machine Learning 

in a Field Experiment on Electricity Conservation 
 

 
September 2020 

 

 

Kayo Murakami*  Hideki Shimada†  Yoshiaki Ushifusa‡  Takanori Ida§ 

 

 

Abstract: This study investigates the different impacts of monetary and nonmonetary 

incentives on energy-saving behaviors using a field experiment conducted in Japan. We 

find that the average reduction in electricity consumption from rebate is 4%, while that 

from nudge is not significantly different from zero. Applying a novel machine learning 

method for causal inference (causal forest) to estimate heterogeneous treatment effects at 

the household level, we demonstrate that the nudge intervention’s treatment effects 

generate greater heterogeneity among households. These findings suggest that selective 

targeting for treatment increases the policy efficiency of monetary and nonmonetary 

interventions. 

JEL: D9, C93, Q4 

Keywords: Causal Forest, Rebate ，Nudge, Randomized Controlled Trial, Energy, 

Machine Learning 

 

  

                                                      
*  Division of Natural Resource Economics, Graduate School of Agriculture, Kyoto 

University, Japan (murakamikayo@gmail.com), JSPS Post-Doctoral Research Fellow

（RPD） (first author & 2nd corresponding author) 
†  Division of Natural Resource Economics, Graduate School of Agriculture, Kyoto 

University, Japan (hshimada.hs3@gmail.com), JSPS Research Fellow（DC2） (2nd first 

author) 
‡ Faculty of Economics and Business Administration, The University of Kitakyushu, 

Japan (ushifusa@kitakyu-u.ac.jp) 
§  Graduate School of Economics, Kyoto University, Japan (ida@econ.kyoto-u.ac.jp) 

(corresponding author) 

mailto:murakamikayo@gmail.com
mailto:hshimada.hs3@gmail.com


 

1 

1. Introduction 

 

Incentive design is the central issue faced by public policymakers in the field of 

environmental conservation and resource management. In economic theory, negative 

externalities can be internalized by imposing Pigouvian taxes and subsidies. However, 

this may lead to typical decision-making obstacles related to pricing rules and financial 

resources in subsidies, which require substantial effort and time to overcome. In contrast, 

nonmonetary incentives, such as a nudge, are considered an alternative public policy tool 

due to their low implementation cost and ability to preserve freedom of choice. This study 

investigates the heterogeneous treatment effects of monetary and nonmonetary 

interventions on energy saving and explores a novel policy mix that could effectively 

utilize such heterogeneities. 

Ample empirical evidence exists regarding the effects of monetary incentives in the 

context of residential energy conservation (Borenstein, 2002, 2005; Wolak, 2011; Joskow, 

2012). For example, the treatment effect of critical peak pricing (CPP), which increases 

prices during critical peak hours, ranges between 7% and 22% peak-cut (Faruqui and 

Sergici, 2010; Jessoe and Rapson, 2014; Ito, Ida, and Tanaka, 2018). However, customer 

opposition often prevents the introduction of such pricing, as it could make some 

customers considerably worse off, making it difficult to implement as a public policy.1 

Although the treatment effect of equivalent amounts of rebate (the reward for energy 

conservation) is expected to be half or less than that of pricing (Wolak, 2011), reward-

style incentives achieve regulatory approval more easily due to easier opt-in, which does 

not require a change in the basic electricity rate and encounters less consumer opposition. 

Nonmonetary incentives refer to real-time feedback on the quantity of electricity 

consumed via an in-home display (IHD), moral suasion, and social comparison 

information on customers’ energy conservation behaviors.2 Using a field experiment, 

Jessoe and Rapson (2014) find that households with an IHD are more responsive to CPP.3 

                                                      
1 The latest study based on a randomized controlled trial (RCT) field experiment (Fowlie 

et al., 2020) shows that the share of customers opting in for new pricing programs such 

as CPP and TOU (Time-of-Use tariff) is only approximately 20%, obviously lower than 

the 50% participation rate observed when all customers are informed and guaranteed 

positive gains from switching to a new pricing program (Ito, Ida, and Tanaka, 2017). The 

study’s findings indicate that pricing-style incentives are hard to introduce in practice. 
2 In addition to these nonmonetary incentives, Azarova et al. (2020) recently 

demonstrated that interventions based on altruistic motives and collective action 

flaming affect customers’ electricity reduction. Additionally, Arimura et al. (2016) 

investigate peer effects on energy consumption. 
3 Martin and Rivers (2018) present a detailed literature review on the effect of IHDs on 
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Ito et al. (2018) and Gillan (2017) demonstrate that moral suasion significantly induces 

energy conservation. In addition, the evidence that social comparison information used in 

this study promotes environmental pro-social behaviors has been provided by several 

social psychological studies (Festinger, 1954; Schultz, 1999; Kurz et al., 2005; Schultz et 

al., 2007; Goldstein et al., 2008; Nolan et al., 2008).4 

Only two recent studies have directly compared the treatment effects of monetary and 

nonmonetary incentives in a unified field experiment. Ito et al. (2018) found that 

nonmonetary incentives reduced peak-hour electricity usage by 8% for the first three 

event days, but the effect reduced to zero in a repeated intervention. However, a 14%-

17% reduction in peak-hour electricity usage from monetary incentives (CPP treatments) 

was observed during the whole experimental period. Similarly, Gillan (2017) found that 

the consumption reduction induced by nonmonetary incentives was not significantly 

different from zero, while the reduction from monetary incentives (CPP treatments) was 

equal to 6%. The nonmonetary incentive utilized in both studies was moral suasion 

(instead of social comparison). To the best of our knowledge, a direct comparison between 

monetary incentives and social comparison nudge using a unified field experiment has 

not been carried out yet in the economics literature. Further, the assessment and 

comparison of the heterogeneity of the treatment effects among households have not been 

conducted. Thus, this study is the first to directly compare and investigate the differences 

between the treatment effects of nonmonetary incentives (social comparison nudge) and 

conventional monetary incentives by using a unified field experiment. 

Leading studies on social comparison and energy conservation behaviors have 

involved field experiments using the OPOWER’s Home Energy Report (HER) (Allcott 

and Mullainathan, 2010; Allcott, 2011; Ayres et al., 2012; Costa and Kahn, 2013; Allcott 

and Rogers, 2014; Allcott and Kessler, 2019; Knittel and Stolper, 2019). Overall, they 

show that the average treatment effect (ATE) of sending bimonthly HER with social 

comparison information is a 2% monthly reduction in electricity consumption. At the 

same time, the effects are heterogeneous: households in the highest decile of pre-

treatment consumption reduce usage by 6.3%, while consumption by the lowest decile of 

customers reduces by 0.3% (Allcott, 2011).5 Furthermore, Allcott and Kessler (2019) 

                                                      

electricity consumption. 
4 Social comparisons have been investigated in many field experiments and across a 

broad spectrum of behaviors, including recycling behavior (Schultz et al., 1999), water 

and energy conservation (Kurz et al., 2005), electricity conservation (Schultz et al., 2007; 

Nolan et al., 2008), and indirect water conservation (i.e., reuse of towel in hotels) 

(Goldstein et al., 2008). 
5  For another example of heterogeneity, Costa and Kahn (2013) show that liberal 
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show that the estimated HER welfare gains might be overstated by the “moral utility” of 

the recipients.6  

To explore a nonmonetary incentive’s effectiveness as a public policy tool, its potential 

heterogeneity needs to be addressed. Recent developments in machine-learning 

techniques allow us to estimate the heterogeneous treatment effects for each household. 

The large number of observable characteristics provides this technique with more 

attractive applications (Athey and Imbens, 2017). Although conventional machine 

learning has been used for predicting outcomes using observable variables instead of 

estimating the parameters of the treatment effects, more recent studies have often utilized 

these algorithms for causal inference. In the context of energy conservation, Knittel and 

Stolper (2019) explore the heterogeneous treatment effect of social comparison 

information in OPOWER’s HER using causal forest (CF) (Wager and Athey, 2018) 

expanded from a causal tree (Athey and Imbens, 2016), thus estimating conditional 

average treatment effect using a regression tree.7  Knowing different responses from 

individuals in different subgroups may increase policy efficiency. For example, Allcott 

and Kessler (2019) suggest that substantial welfare improvement is expected by applying 

selective targeting based on the heterogeneous willingness to pay for HER with social 

comparison. We demonstrate that the selective targeting according to the heterogeneity 

estimated by the CF algorithm improves treatment effects. 

This study makes three primary contributions to the literature. First, our experimental 

setup is the first to directly compare monetary incentives (rebate) and nonmonetary 

incentives (social comparison nudge) in a cohesive field experiment, shedding light on 

the heterogeneity of treatment effects. We focus on electricity conservation in peak-

demand hours, in which the marginal cost of electricity is substantially higher than the 

rest of the day. Second, we analyze the heterogeneous treatment effect for each household 

to reveal the mechanisms behind the heterogeneity by using the machine learning 

technique. Finally, we suggest a novel feasible targeting strategy based on a rich set of 

household characteristics. As part of the study, we conducted an RCT on 954 households 

with advanced electricity meters, often called smart meters, in Japan. We randomly 

assigned all households to one of the three groups: Control (C), Rebate (R), and Nudge 

                                                      

households reduce energy usage in response to HERs two to four times more than 

conservative ones.  
6 Glaeser (2006) fears a “psychological tax” or “moral tax” of a nudge, which reduces 

consumer welfare, while it does not generate revenues. 
7 The first study utilizing causal forest algorithms to evaluate treatment effects in RCT is 

Davis and Heller (2017b), which examined youth employment problems in the summer. 
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(N), and observed their behavioral changes in terms of electricity usage. Using high-

frequency data (30-minute intervals) of household electricity usage and observable 

household characteristics, we estimated the average treatment effects (ATEs) and 

heterogeneous treatment effects at the household level and the determinants of such 

heterogeneities. Moreover, we assessed the improvement in the expected treatment using 

optimum targeting strategies based on the heterogeneous treatment effects predicted by a 

machine learning technique. 

Our main findings are as follows. Using a difference-in-difference (DID) regression 

approach, we first estimate the ATE. We find that the rebate intervention reduces 

electricity consumption by 4%, and the social comparison nudge intervention lowers 

electricity consumption by 1%, but such an effect is not significantly different from zero. 

Second, by applying a novel machine learning approach for causal inference (CF) to 

estimate heterogeneous treatment effects at the household level, we demonstrate that the 

treatment effects of the nudge intervention are characterized by twice as large 

heterogeneity among households than in the case of the rebate intervention. Moreover, 

while the effects of the rebate intervention (i.e., boosting conservation) are intended for 

all households, in the case of the nudge intervention, 37% of households show an 

unintended reaction (i.e., increasing consumption). The proposed CF methods also reveal 

that these heterogeneities depend on a household’s electricity use and their differences 

with respect to similar households. Third, we demonstrate that selective targeting, where 

the nudge intervention is allocated to customers for which the predicted treatment effect 

of a nudge is larger than that of a rebate and the rebate intervention is allocated to those 

for which the predicted treatment effect of a rebate is larger than that of a nudge, is 

expected to improve the ATE, generating a 6% reduction in electricity use. 

The remainder of this paper is organized as follows. Section 2 explains the 

experimental design and treatment and describes the data, and Section 3 introduces the 

DID regression model and results on the ATEs. The CF method and results are presented 

and discussed in Section 4. Section 5 discusses findings and the implications of the study. 

Section 6 provides the conclusions. 

 

2. Experimental Design, Treatment, and Data 

 

2.1. Experimental Design and Data 

 

From November 2019 to February 2020, we conducted a field experiment targeting the 

customers of Chubu Electric Power Co., Inc., which has the second-largest share of the 
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retail electricity market in Japan. We contacted more than 20,000 residential electricity 

customers in the Chubu Electric Power area through a Japanese internet research 

company.8 All customers were informed about the project aim of saving residential 

electricity consumption using information from advanced electricity meters, survey 

schedules, and participation rewards. We discarded households that were not customers 

of Chubu Electric Power, had planned to move residence during the experiment, or did 

not have smart meters. Overall, 1,168 customers confirmed their participation. We 

excluded customers whose electricity use data over the experiment period were not 

technically obtainable and those for whom we could not determine whether they received 

interventions. The final sample comprises 954 households. 

We randomly assigned the 954 households to one of three groups: control (C), rebate 

(R), and nudge (N).9 

 

Control Group (C): The 327 households in this group received information feedback 

about daily electricity use (kWh) and peak-time electricity use (kWh) and a participation 

reward. They received no other intervention. 

Rebate Group (R): The 313 households in this group received information feedback 

about daily electricity use (kWh) and peak-time electricity use (kWh) and a participation 

reward. In addition, they received monetary incentives for energy conservation, as 

described below. 

Nudge Group (N): The 314 households in this group received information feedback 

about daily electricity use (kWh) and peak-time electricity use (kWh) and a participation 

reward. In addition, they received a social comparison nudge for energy conservation, as 

described below. 

 

The experiment was implemented in three phases, summarized in Figure 1. In the first 

phase (the first survey), we collected household-level electricity usage data at 30-minute 

intervals in the early winter (December 1–14)10 as well as household characteristics (e.g., 

                                                      
8 MyVoice (https://www.myvoice.co.jp/) 
9  Before confirming the experimental design, we conducted a pre-experiment for a 

random sample of households different from the recipients of our main survey. In the pre-

experiment, we randomly assigned households to one of four groups: control (C), rebate 

(R), nudge (N), and rebate + nudge (RN), and examined the combined effect. Based on 

the estimated ATE and standard error in the pre-experiment, we excluded the fourth group 

(RN) due to the lack of crowd-out effect and synergy effect in combination. 
10 After electricity deregulation, from April 2016, electricity customers with a smart-

meter have had the ability to autonomously check and download their high-frequency 
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monthly electricity bill, electricity rate plan, consciousness to save power, and number of 

appliances and units).11 In the second phase, households were stratified and randomly 

assigned to one of the above three groups based on daily and peak-time consumption data 

during the early winter and received different energy reports (January 24–30). The 

treatment groups also received a notification about rewards or a nudge for energy 

conservation during seven peak-load event days (January 31 – February 6). Households 

in the treatment groups received a pre-event e-mail on the day before the peak-load event 

(at 5 pm, January 30). In the third phase (the second survey), after the seven event days, 

we collected household-level electricity usage data at 30-minute intervals from January 1 

to February 6, including pre-period data and event period data,12 and asked customers 

their impression regarding the energy reports. At the end of the experiment, we provided 

feedback and a participation reward of 1,000 yen (approximately $9 in 2020): 300 yen 

for responding to the questionnaires and 700 yen for completing the entire survey process. 

 

＜Figure 1．Timeline and procedures for the experiment＞ 

 

Table 1 presents the summary statistics of pre-experiment consumption data and 

demographic variables by group. Due to the stratified randomization based on electricity 

use (i.e., daily use and peak-time use) in the “Early Winter” season, the observables are 

balanced across groups.13 Electricity usage during the early winter, pre-event period, and 

rebate baseline period as well as other electricity-related demographic characteristics are 

similar across groups. 

We collect household-level electricity consumption data of 30-minute intervals in 

peak-demand hours (5 pm – 9 pm) from January 1 to February 6, discarding the seven 

days between January 24 and January 30 (before the event days) because the households 

received group-specific energy reports during this period. We only assessed the behavior 

of households that received the energy report for certain by ascertaining their response to 

                                                      

data. Using this system, we asked participants to download 30-minute interval data from 

their member pages and send them without their private information (i.e., name, 

residential address). In the first survey, we obtained 14 days of data from December 1 to 

December 14. 
11 The questionnaire is available upon request． 
12 In the second survey, we obtained 37 days of data from January 1 to February 6. 
13 We used stratified randomization to assign households to each group based on the daily 

electricity consumption (three blocks) and peak-time (four blocks) because different 

consumption patterns were observed in daily use and peak-time in the pre-experiment. 
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simple questions submitted via a quick survey.14 Thus, using high-frequency data on 

household electricity usage from January 1 to January 23 as pre-event data and the data 

from January 31 to February 6 as event data, we examine how the proposed treatments 

affect electricity usage in peak-demand hours for the 954 selected households. 

Winter weather patterns are typically observed from late November until early March 

in the experimental region. Because customers experience the coldest time of the year 

from December to February in this region, winter patterns (when residents use heating 

appliances) in electricity usage are observed during our experimental term. 15  We 

randomly assigned households to groups based on “Early Winter” electricity consumption 

and used the consumption data of January and February to examine the treatment effects 

of interest. 

 

＜Table １. Summary statistics by control group and treatment groups＞ 

 

2.2. Treatments 

 

A. Monetary Incentive 

 

Our first treatment is a monetary incentive, a rebate for energy conservation. We 

provided information feedback about daily electricity use (kWh) and peak-time electricity 

use (kWh) for the control group and the treatment groups (Figure 2). 𝑌𝑖
𝑏𝑎𝑠𝑒 indicates the 

rebate baseline consumption of household 𝑖, which is the total electricity use in peak-

demand hours of the week (January 17–23) before informing the households of the rebate 

rule. 𝑌𝑖
𝑒𝑣𝑒𝑛𝑡 indicates the consumption of household 𝑖, which is the total electricity use 

in peak-demand hours of the event week (January 31– February 6). We defined total 

electricity conservation in peak-demand hours per week, ∆𝑌𝑖
𝑡𝑜𝑡𝑎𝑙 ,  as the difference 

between 𝑌𝑖
𝑒𝑣𝑒𝑛𝑡  and 𝑌𝑖

𝑏𝑎𝑠𝑒  for household 𝑖 . Thus，∆𝑌𝑖
𝑡𝑜𝑡𝑎𝑙 = − min {0, 𝑌𝑖

𝑒𝑣𝑒𝑛𝑡 −

𝑌𝑖
𝑏𝑎𝑠𝑒} because household 𝑖 obtains zero incentive if energy conservation is negative 

                                                      
14 For the excluded households, we tested for balance in the observable characteristics 

across groups and confirmed statistical balance in observables. Thus, no different features 

were observed across groups for the excluded households. 
15 We compared the monthly average high and low temperatures between the Nagoya 

prefecture in Japan (the mid-part of our experimental region) and Washington DC in the 

US. We provide this comparison in Figure A1 in the Appendix. Little variety is observed 

in weather patterns in Japan, except for the Hokkaido prefecture. The average low and 

high temperatures are very similar between the three largest retail electricity market areas 

(Kanto, Chubu–our experimental region, and Kinki) in Japan and Washington DC. 
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(𝑌𝑖
𝑒𝑣𝑒𝑛𝑡 − 𝑌𝑖

𝑏𝑎𝑠𝑒 < 0). 

Therefore, the total amount of rebate per event week for household 𝑖 can be calculated 

as follows: 

𝑄𝑖 = min{∆𝑌𝑖
𝑡𝑜𝑡𝑎𝑙 ∗ 100 JPY, 1000 JPY}.     (1) 

The households in the rebate group (R) received 100 yen per 1 kWh conservation if 

electricity use in peak-demand hours of the event week (January 31–February 6) was less 

than that of the previous week (January 17–23). The maximum rebate was 1,000 yen.16 

The households received rebates in addition to their participation rewards. 

To secure the transparency of the incentive design, we informed households in the 

rebate group (R) of the rebate calculation rule before the event days. The messages sent 

to this group after the group assignment were “Substantial energy conservation will be 

required for the society during the coldest part of winter (January and February in 

particular)” and “Please reduce your electricity usage in the critical peak-demand hours 

during the following week.” In addition, messages sent also included “During 5 pm – 9 

pm (peak-demand hours) of the event week from January 31 to February 6, you will 

receive rebates for your electricity conservation in addition to your participation rewards” 

and “Rebate will be 100 yen per kWh (maximum 1,000 yen in total per week),” with 

notes saying “Your total electricity conservation will be calculated as the reduction from 

your usage of the normal week of January 17–23.”17 

The households received these messages between January 24 and January 30. Thus, 

they were unable to manipulate their rebate baseline consumption of the normal week 

(January 17–23). While baseline-based rebates provide customers with incentives to 

reduce electricity use during event days, they may also create undesired incentives for 

customers to manipulate their baseline consumption (Wang and Tang, 2018). This 

“baseline manipulation” has often been observed in RCT field experiments (Wolak, 2007) 

                                                      
16 We confirmed this maximum rebate prompted by budget constraints. The maximum 

rebate amount of 1,000 yen corresponds to 10 kWh electricity conservation in peak-

demand hours. The average electricity use in peak-demand hours of the pre-event period 

was 0.43 kWh/30-min., and the total use in seven days was approximately 24 kWh. Thus, 

the maximum rebate amount (1,000 yen; 10 kWh equivalent) corresponds to more than 

40% (drastic) reduction from normal use. In our experiment, the average rebate amount 

was 145 yen for all households in the rebate group (R), and seven households (2% of 

these) received 1,000 yen. In addition, the electricity rate during these hours is 21–28 yen 

per 1 kWh in normal conditions. These elements confirm that the maximum rebate (1,000 

yen) and rebate unit (100 yen per 1 kWh) are sufficient incentives for conservation 

activities in this experiment.  
17 These messages are all provided in Figure A2 in the Appendix. 
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and causes significant errors in the prediction of demand and treatment effects. However, 

in the proposed experiment, strategic manipulation was impossible because the rebate 

calculation rule was not announced until January 24. As shown in Table 1, the rebate 

baseline consumption (January 17–23) is statistically similar across groups. 

We provided a list of familiar energy-saving activities and the consequent electricity 

consumption reduction (kWh) for the rebate group.18 To ensure that participants could 

easily access the information about these energy-saving activities, event days and hours, 

and rebate rules, we sent a one-page summarized document (via e-mail). At the end of the 

document, we added a QR code for detailed information on the energy-saving activities 

provided by the Japanese Agency for Natural Resources and Energy so that participants 

could learn more about energy-saving actions. We delivered notifications to customers at 

5 pm on January 30 by sending a text message to their cell phones or an e-mail to their 

computers with the URL of the one-page summarized document mentioned above. 

 

B. Nonmonetary Incentive 

 

Our next treatment is a nonmonetary incentive, which is a nudge based on social 

comparison information. After assigning customers to the nudge group (N), we provided 

them with information feedback about daily electricity use (kWh) and peak-time 

electricity use (kWh) in line with the other groups and informed them of the social 

comparison reports, as follows. The key feature of the social comparison information is a 

bar graph comparing a household’s electricity use during peak hours in the early winter 

period to the mean electricity use by similar households (Figure 3). The latter is the 

predicted value for each household obtained through the Random Forest (RF) approach 

(Breiman, 2001) based on 81 observable characteristics identified in the first survey, 

which addressed electricity use in 30-minute intervals, monthly energy bills, demographic 

characteristics, lifestyle characteristics related to energy consumption, and owned 

appliances and number of units.19 The households that use less electricity compared to 

                                                      
18 The list of activities consists of six familiar energy-saving actions: efficient use of air 

conditioner, refrigerator, TV, lights, and stand-by power, and enjoying outside activities. 

We also indicate how much electricity (kWh) is possibly saved in seven days by 

committing to each action. 
19 The algorithm that identifies “similar” households in the O-power HER is not disclosed, 

but it is a function of 100 geographically nearest neighbors in similar house sizes (Allcott 

and Kessler, 2019). In this study, we predicted electricity use during peak hours for each 

household by using RF based on the 81 characteristics obtained in the first survey as 

“similar” households’ electricity usage. 
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similar households earn a “good!” mark, which represents an “injunctive norm” and is 

expected to reduce the boomerang effect. However, we did not provide any mark related 

to the injunctive norm (i.e., bad mark) to households with high relative use to avoid 

customers’ dissatisfaction.20 

To secure the transparency of incentive design, we informed households in the nudge 

group (N) that they would receive feedback about their energy conservation achievements 

at the end of the season. The messages sent to this group after the group assignment were 

“Substantial energy conservation will be required for the society during the coldest part 

of winter (January and February in particular)” and “Please reduce your electricity usage 

in the critical peak-demand hours (5 pm – 9 pm) of the event week from January 31 to 

February 6.” There were also messages such as “You will receive feedback information 

on how much electricity you have conserved,” with notes saying “Your total electricity 

conservation will be calculated as the reduction from your usage of the normal week of 

January 17–23.” 

We provided a list of familiar energy-saving activities and the consequent amount of 

electricity reduction (kWh) and CO2 reduction (kg-CO2) to the nudge group. To ensure 

that participants could easily access the information about these energy-saving activities 

and event days and hours, we also sent them an e-mail with a one-page summarized 

document. At the end of the document, we added a QR code for detailed information on 

energy-saving activities, similarly to the rebate group so that participants could learn more 

about energy-saving actions, if interested. We delivered notifications to customers at 5 

pm on January 30 by sending a text message to their cell phones or an e-mail with the 

URL of the above one-page summarized document.21 

 

＜Figure 2. Energy report for the control and rebate groups＞ 

 

                                                      
20 The earlier versions of O-power HER included an injunctive norm (smiley faces), 

which could eliminate the boomerang effects (Allcott, 2011). More recent versions of the 

HER did not use any injunctive norm; hence, boomerang effects were observed (Knittel 

and Stolper, 2019).  
21 OPOWER’s HER comprises two features: a bar graph comparing a household’s energy 

use to that of its neighbors and energy conservation tips suggesting ways to achieve 

energy saving by daily behavioral changes and replacing durable appliances. Our energy 

report follows these features (i.e., social comparison and conservation tips); we also 

provide information regarding how to read the hourly consumption data graph visualized 

in the customers’ member pages (e.g., the correlation between the usage and the hourly 

behaviors). Hence, customers can learn more about the relationships between their regular 

specific activities and electricity consumption related to their interests. 
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＜Figure 3. Energy report for the nudge group＞ 

 

3. DID Estimation 

 

3.1.Estimation of ATEs 

 

As mentioned above, we use household-level electricity consumption data of 30-minute 

intervals in peak-demand hours of the pre-event and event periods to estimate the ATE, 

as follows: 

ln 𝑌𝑖𝑡 = ∑ 𝛽𝑑𝑍𝑖𝑡
𝑑

𝑑∈{𝑛𝑢𝑑𝑔𝑒,𝑟𝑒𝑏𝑎𝑡𝑒}

+ 𝜃𝑖 + 𝜆𝑡 + 𝜂𝑖𝑡,                   (2) 

where 𝑌𝑖𝑡 is the electricity usage of household 𝑖 in 30-minute interval 𝑡. 𝑍𝑖𝑡
𝑑  equals 

one if household 𝑖 is in group R (rebate) or group N (nudge) and receives treatment in 

𝑡. We included household fixed effect 𝜃𝑖, and time fixed effects 𝜆𝑡 for each 30-minute 

interval to control for time-specific shocks (such as changing weather conditions). We 

clustered the standard errors at the household level to adjust for serial correlation. 𝜂𝑖𝑡 is 

an unobserved error term with mean equal to zero. 𝛽𝑑  captures the ATE of each 

treatment. We used the natural logarithm of electricity usage for the dependent variable, 

ln 𝑌𝑖𝑡, so that we may approximately interpret the treatment effects in percentage terms. 

 

3.2. DID Estimation Results: ATE 

 

Table 2 reports the ATEs estimated using the proposed DID regression model. Column 

1 of Table 2 shows that the rebate intervention (100 yen per 1 kWh) caused a significant 

reduction in peak-hour electricity usage (4.3% for the treatment days), and the social 

comparison nudge caused a 0.7% reduction, but such an effect is insignificant. Columns 

2 and 3 of Table 2 show that the ATEs estimated using split samples are highly 

heterogeneous as significant differences exist between lower users (Less) and higher users 

(More) during peak-demand hours. Note that lower users (higher users) are defined as 

households whose peak-time electricity consumption is lower (higher) than the usage 

predicted by the RF using observable characteristics and consumption data in 30-minute 

intervals, both obtained in the first survey.22 For the households in the nudge group, we 

                                                      
22 Of the 954 households, 18 received the note “You use approximately the same amount 

of electricity as similar households,” as their consumption did not differ from the RF-

predicted usage by more than 1 percent. Thus, the split samples used for estimation in 

Columns 2 and 3 do not include these 18 households. 
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provided messages on lower (higher) electricity use than similar households for lower 

users (higher users) as social comparison information. Thus, these ATEs capture the 

behavioral changes motivated by each social comparison nudge. For the households in 

the rebate group to whom we did not provide the above information, the ATEs 

demonstrate heterogeneity in the behavioral changes motivated by the rebate intervention 

based on the patterns of peak-time electricity consumption.23 Column 2 shows that the 

ATEs for lower users are significant and larger in both interventions: −5.6 % for the rebate 

and −3.8% for the nudge. However, the results in Column 3 indicate that the ATEs for 

higher users are not significantly different from zero in either intervention. 

 

＜Table 2. ATE of rebate and nudge＞ 

 

According to previous studies, monetary incentives induce 7%–22% electricity 

reduction during peak-demand hours in pricing-style interventions (CPP) (Jessoe and 

Rapson, 2014; Ito et al., 2018) and less than a half of that in rebate-style interventions 

(CPR or critical peak rebate) (Wolak, 2011). These findings are consistent with the result 

of our study (4.3%). Regarding nonmonetary incentives, only two studies investigate the 

treatment effects of a nudge for energy conservation during peak-load events (Ito et al., 

2018; Brandon et al., 2019). Ito et al. (2018) utilize moral suasion, and Brandon et al. 

(2019) utilize peak-time energy reports (PER) with social comparison as a nudge 

intervention. The latter is the closest analog to our study. They address three peak-load 

events during two months in the summer (August and September) of 2014 and estimate 

the ATEs of PER with social consumption information on peak-time electricity use using 

hourly consumption data.24 They find that the ATE of PER for households that have not 

received bimonthly HER is −3.8%, in line with our estimate for households with low 

relative use. Unlike their experiment, however, we address a continuous seven-day event, 

which causes a relatively smaller treatment effect, on average, as customers are expected 

to make continuous efforts or intermittent efforts choosing several easy days to conserve 

electricity use during these seven days. Ito et al. (2018) address intermittent 21-day peak-

load events during the winter of 2013 and show that the effects of their nudge (i.e., moral 

                                                      
23  Table B2 in the Appendix compares the covariates across subgroups. For each 

subgroup, we tested for balance in observable characteristics between the control group 

and the nudge group, and we confirmed statistical balance in observables. Thus, no 

different features were observed across subgroups. 
24 Their interventions were conducted via telephone call or a combination of telephone 

call and e-mail notification on the afternoon of the day immediately before a peak event. 

Event days occurred one time in August and two times in September. 
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suasion) quickly shift toward zero, while their nudge causes an 8.3% reduction in peak-

time electricity use for the first three days. Their findings indicate that customers find it 

hard to consistently commit to electricity conservation. 

 Although heterogeneity in treatment effects based on the relative daily electricity 

consumption of households has been observed for bimonthly HER (Allcott, 2011), no 

heterogeneity has been detected for PER based on baseline electricity consumption 

(Brandon et al., 2019). In this study, we observe treatment effect heterogeneity based on 

peak-time electricity consumption: the ATEs of rebate and nudge are −5.6% and −3.8%, 

respectively, for households with lower peak-time consumption than the peak-time usage 

predicted by RF and are not significantly different from zero for households with higher 

peak-time consumption. 

A social comparison message provides “upward social comparison” to households 

with higher consumption and “downward social consumption” to households with lower 

consumption. It should be noted that an upward social comparison may encourage efforts 

to conserve energy in some cases but may also discourage consumers when they feel 

inferiority or frustration in strongly self-related activities. In this study, on the one hand, 

the latter negative influence seems significant in the short term. On the other hand, 

downward social comparison is found to stimulate positive feelings, such as superiority 

or happiness, promoting positive impacts and increasing people’s performances, 

according to a large body of social and psychological studies. Such positive feelings were 

strongly stimulated by the injunctive norm (i.e., the “good!” mark) in our experiment.25 

 

4. Causal Forest 

 

4.1. Estimation Model 

 

We estimate heterogeneous treatment effects (HTE) by using the CF approach (Wager 

                                                      
25 Our follow-up survey data (i.e., response data in the second survey) indicate that social 

comparison messages induce positive feelings (feeling inspired or proud) for lower users 

and negative feelings (feeling pressured or guilty) for higher users. Regarding households 

with higher electricity use, 26% stated that the HER made them feel “pressured,” and 4% 

declared that it made them feel “guilty”; both of these values are 1.5 to 2 times greater 

than those of the households with lower electricity use. Regarding the latter, 59% stated 

that the HER made them feel “inspired,” and 10% declared that it made them feel 

“proud”; both values are 1.1 to 10 times greater than those of the households with higher 

use. For a comprehensive review of the evidence related to the effects of social 

comparison on human behaviors in social psychology, see Bunk and Gibbons (2007). 
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and Athey, 2018). The CF allows us to estimate treatment effects conditional on 

household characteristics and, therefore, to predict household-specific treatment effects. 

With the growing interest in the HTE, economists have begun applying the CF in various 

contexts such as youth employment programs (Davis and Heller, 2017a, 2017b), 

interventions to induce energy saving (O’Neill and Weeks, 2018; Knittel and Stolper, 

2019), and rural development programs (Carter, Tjernström, and Toledo, 2019). 

The CF is built on the RF, which solves regression and classification problems by 

aggregating B trees grown with B bootstrap subsamples into a forest. Each tree grows by 

splitting a variable at a certain value in each node. More precisely, the algorithm chooses 

m household characteristics from the set of p (m < p) characteristics and splits one of the 

m characteristics at each node so that the variance of an outcome is maximized after each 

split (Hastie et al., 2009; Biau and Scornet, 2016). In this study, we apply the Generalized 

Random Forest (GRF) algorithm (Athey, Tibshirani, and Wager, 2019), which comprises 

the CF algorithm as a special case. 

Let 𝜏𝑑(𝑥) denote the HTE, the parameter of interest in this study, which can be 

defined for each treatment 𝑑 ∈ {nudge, rebate} as follows: 

𝜏𝑑(𝑥) = 𝐸 [ 𝑌𝑖(𝑍𝑖
𝑑 = 1) − 𝑌𝑖 (𝑍𝑖

𝑑 = 𝑍𝑖

𝑑′
= 0) ∣∣

∣ 𝑋𝑖 = 𝑥 ],                   (3) 

where 𝑑′ ≠ 𝑑, and 𝑌𝑖(𝑍𝑖
𝑑 = 1) and 𝑌𝑖 (𝑍𝑖

𝑑 = 𝑍𝑖

𝑑′
= 0) denote potential outcomes 

realized if household i receives treatment d and if household i does not receive any 

treatments, respectively. In other words, 𝜏𝑑(𝑥)  represents the treatment effects 

conditional on household characteristics. For households with 𝑍𝑖
𝑑 = 1 or 𝑍𝑖

𝑑 = 𝑍𝑖

𝑑′
=

0, the GRF calculates 𝜏𝑑(𝑥) as the solution of the following moment equation: 

𝐸[ 𝜓𝜏𝑑(𝑥),𝑐𝑑(𝑥)(𝑌𝑖, 𝑍𝑖
𝑑) ∣∣ 𝑋𝑖 = 𝑥 ] = 0,                   (4) 

where 𝑐𝑑(𝑥) is a constant term, and 𝜓(⋅) represents a score function. Under the GRF 

framework, the score function is specified as follows: 

𝜓𝜏𝑑(𝑥),𝑐𝑑(𝑥)(𝑌𝑖 , 𝑍𝑖
𝑑) = (𝑌𝑖 − 𝜏𝑑(𝑥) ⋅ 𝑍𝑖

𝑑 − 𝑐𝑑(𝑥)) (
1

𝑍𝑖
𝑑).                   (5) 

The GRF algorithm grows B trees, as the RF algorithm does. Leaves, the edges of each 

tree, contain information on leaf-level treatment effects. The HTE is calculated as the 

weighed sum of such leaf-level treatment effects. Trees are grown in a way that 

maximizes the heterogeneity of treatment effects after each split.26 The GRF algorithm 

                                                      
26 The GRF algorithm uses a criterion that approximates the heterogeneity to reduce the 
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proceeds as follows: 

 

1. Take S random subsamples from the whole sample without replacement; 

2. Divide the subsamples into two sets (S1 and S2); 

3. Use S1 to grow trees; 

4. Use S2 to compute 𝜏𝑑(𝑥); 

5. Iterate steps 1–4 for B times; 

6. Weight trees to aggregate into a forest.27 

 

The HTE computed above is asymptotically consistent and normal. In this study, we use 

the R package grf (Tibshirani et al., 2018) to estimate the HTE. 

 

4.2. Empirical Specification 

 

To implement the GRF algorithm, we use 30-minute interval electricity usage in peak-

demand hours during the pre-event and event periods divided by the mean households’ 

electricity usage during the pre-event period as an outcome. While this outcome has a 

panel structure, the package grf does not provide an algorithm for panel data. Hence, we 

try to capture the features of panel data as follows. First, to control for time trends, we 

include in our covariate set discrete variables that increase at each 30-minute interval or 

each day. Note that these variables are not dummies but variables that grow over time. 

Since we focus on the peak-demand hours, the 30-minute interval variable takes one of 

eight values (1,…, 8). The day variable takes one of 30 values (1,…, 30) as we use data 

for the pre-event (from January 1 to January 30) and event periods (from January 31 to 

February 6), excluding the energy report period (from January 24 to January 30). Second, 

we use the “cluster” command to cluster households. As a result, observations from the 

same household are more likely to be selected in the first step by the GRF algorithm 

(Athey and Wager, 2019). By clustering, we can incorporate correlations within 

households into the proposed estimation model. 

Additionally, we use 86 household characteristics obtained from the smart meter data 

and survey. We construct five variables using these smart meter data. The first is the 

difference in energy consumption in the peak-demand hours compared to that of “similar 

households” in early winter (see Section 2.2). The other four are the mean, standard 

                                                      

computational burden． 
27  The weights are computed inside the algorithm. The weight for household i is 

determined based on how often household i belongs to the same leaf as x. 
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deviation, maximum, and minimum of energy consumption during the pre-event period. 

From the survey data, we construct variables for the socio-economic characteristics of 

customers such as their age or income, building-related characteristics such as the age of 

the house or home size, and electricity-usage-related characteristics such as the number 

of durable electric goods or the electricity plan. Note that this study is primarily interested 

in finding variables that are useful for targeting purposes. Hence, we follow Athey and 

Wagner (2019) to automatically select essential variables within the algorithm. 

Table 3 reports the ATEs during the event period as calculated by the GRF algorithm. 

The results are consistent with those presented in Column 1 of Table 2, even though the 

absolute values are slightly larger. On average, rebate intervention reduces energy 

consumption more than nudge intervention. The former exhibits statistically significant 

effects, while the effects of the latter are indistinguishable from zero. These results 

suggest the validity of the proposed specification for the GRF algorithm. 

 

<Table 3 ATEs computed by the GRF algorithm> 

 

4.3. Heterogeneous Treatment Effects 

 

Figure 4 plots the distributions of household-specific treatment effects predicted by the 

GRF. The horizontal axis measures the treatment effects, while the vertical axis represents 

the fraction of each bin. Panels A and B represent the treatment effects of the rebate and 

nudge interventions, respectively. The treatment effects measure the reduction rate of 30-

minute consumption relative to the mean 30-minute consumption during the pre-event 

period. 

 

<Figure 4 Distributions of heterogenous treatment effects> 

 

Figure 4 indicates that both interventions generate heterogeneity in treatment effects. 

However, the degree of heterogeneity differs across interventions. The predicted 

treatment effects of the rebate intervention are negative (i.e., reducing electricity usage) 

for all of the households. The standard deviation of the distribution is 1.5%, and the 

minimum and maximum are −8.5% and −0.79%, respectively. However, the treatment 

effects of the nudge intervention are more heterogeneous than those of the rebate 

intervention and positive (i.e., increasing electricity usage) for 36.5% of the households. 

The standard deviation is 3.8%, with a minimum of −17.9% and a maximum of 15.0%. 

These results suggest that the treatment effects may be improved by predicting the 
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treatment effect heterogeneity, especially that of the nudge intervention, and by assigning 

households to an intervention that leads to larger treatment effects. If observable 

household characteristics can largely explain heterogeneity, targeting based on such 

characteristics may improve the efficiency of a policy. 

Figure 5 represents the “Variable Importance,” which measures the fraction of times a 

household characteristic is used for splits. We can interpret variables with high Variable 

Importance as essential determinants of the treatment effect heterogeneity. 

 

<Figure 5 Key variables for growing trees> 

 

Figure 5 shows that electricity-usage-related characteristics are fundamental in both 

interventions. The difference in electricity usage compared to that of similar households 

in early winter ranks the highest. In addition, the mean, standard deviation, maximum, 

and minimum of consumption during the pre-event period also rank high. The treatment 

effects are heterogeneous over electricity-usage-related characteristics, in line with the 

results of O’Neill and Weeks (2018), who investigate the effects of economic incentives 

on energy saving, and Knittel and Stolper (2019), who investigate the effects of non-

economic incentives. These results imply that if a policymaker can observe electricity-

usage-related characteristics, especially the difference in consumption relative to similar 

households, the treatment effects may be improved via targeting. We further discuss this 

point in the next section. 

In addition to electricity-usage-related characteristics, Figure 5 also confirms other 

findings in the literature. For example, O’Neill and Weeks (2018) show that the number 

of laptops is an essential determinant of heterogeneity. Moreover, the existence of an 

association between treatment effect heterogeneity and household characteristics, such as 

solar panel possession, income, household size, and age, is in line with Ida, Murakami, 

and Tanaka (2016), who investigate the treatment effect heterogeneity of dynamic pricing 

on energy saving. While their study does not find a significant association between the 

number of air conditioners and home size, Figure 5 shows that these characteristics are 

essential for growing trees. Finally, the mean electricity and gas bills and house age, 

which have not been investigated in the literature, also seem to play a vital role. 

 

4.4. Slope Test of Heterogeneity 

 

To examine whether the predicted treatment effects estimated in Section 4.3 reflect true 

treatment effect heterogeneity, we adopt the sample splitting approach proposed by 
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Chernozhukov et al. (2019), also applied by Davis and Heller (2017b) and O’Neill and 

Weeks (2018). We first divide the whole sample into training and test samples. Then, we 

estimate a forest using the training sample and predict treatment effects �̂�𝑑 with the test 

sample. Based on these predictions, we run the following regression and save its 

coefficients and standard errors: 

𝑌 = 𝑋𝛽𝑑 + 𝛾𝑑(𝑍𝑑 − 𝑝𝑑) + 𝜂𝑑(𝑍𝑑 − 𝑝𝑑)(�̂�𝑑 − 𝐸(�̂�𝑑)) + 𝜀,                   (6)  

where 𝑝𝑑 is the propensity score. We weight the regression by 1/(𝑝𝑑(1 − 𝑝𝑑)). After 

iterating this procedure 1000 times, we calculate the median of the estimates and 

confidence intervals of size 𝛼/2. Chernozhukov et al. (2019) show that this algorithm 

provides point estimates and their (1 − 𝛼) confidence intervals. Specifically, if 𝜂𝑑 is 

statistically distinguishable from zero, we can conclude that there exists heterogeneity in 

treatment effects, and our predictions are relevant to the true heterogeneous treatment 

effects. In addition, 𝛾𝑑 measures the expected treatment effects. Table 4 summarizes the 

estimation results of the sample splitting approach.28 

 

<Table 4 Results of the slope test> 

 

Table 4 shows that the results of ATE (𝛾𝑑) are consistent with those reported in Column 

1 of Table 2. Namely, the ATE of the rebate intervention is −4.4% and is statistically 

significant, while that of the nudge intervention is −0.8% and is statistically 

indistinguishable from zero. Importantly, the results in Column 2 of Table 4 show that in 

both interventions, 𝜂𝑑  is statistically different from zero. Overall, the results of the 

sample splitting approach indicate that the treatment effects of both rebate and nudge 

interventions are heterogeneous, and our predicted values based on the GRF approach 

capture the true treatment effect heterogeneity. 

 

5. Improvement of Treatment Effects Through Targeting 

 

The existence of treatment effect heterogeneity in both interventions and the difference 

in their distributions suggest that a preferable intervention in terms of its impacts on 

energy saving differs from household to household. Therefore, policy designs that 

selectively assign one of the interventions to each household would improve treatment 

                                                      
28 For implementing the sample splitting approach, we modify the code by Davis and 

Heller (2017b)． 
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effects and welfare gains (Allcott and Kessler, 2019). In this section, we leverage the 

estimated treatment effect heterogeneities and a rich set of household characteristics to 

develop a novel feasible targeting strategy. To this end, we compare predicted treatment 

effects of the monetary intervention to those of the nonmonetary intervention at the 

household level and assign an intervention that generates larger treatment effects. 

Figures 6 and 7 intuitively show how targeting improves treatment effects. The 

horizontal and vertical axes measure the values of household characteristics and the 

predicted treatment effects, respectively. The solid lines represent local polynomial 

regression curves. The household characteristics in Figures 6 and 7 are the mean 

electricity usage during the pre-event period and the difference in energy consumption 

compared to similar households in early winter, respectively. Panels A and B report the 

results of the rebate and nudge interventions, respectively. 

 

<Figure 6 Mean electricity usage in the pre-event period and treatment effects> 

 

<Figure 7 Difference in electricity usage and treatment effects> 

 

Both panels in Figures 6 and 7 confirm the existence of heterogeneity in the treatment 

effects. Panel A of both figures shows that the treatment effects of the rebate intervention 

decrease in both mean energy consumption and the difference in consumption relative to 

similar households. The treatment effects of the nudge intervention exhibit a similar 

pattern, as shown in Panel B. However, unlike the rebate intervention, the local 

polynomial regression curves of the nudge intervention turn positive at certain thresholds: 

0.5kWh for the mean consumption during the pre-event period and 0kWh for the 

difference in consumption compared to similar households in early winter. To improve 

the treatment effects, households whose characteristics are above these thresholds should 

be assigned to the rebate intervention rather than the nudge intervention. In contrast, 

households whose values lie in the leftmost region (i.e., low mean usage and difference) 

have larger treatment effects and should be assigned to the nudge intervention. Thus, 

targeting based on these characteristics can improve the treatment effects. 

The negative correlation between mean energy consumption and treatment effects 

contradicts O’Neill and Weeks (2018) and Knittel and Stolper (2019). They find that the 

treatment effects increase in mean energy consumption. This difference in results may be 

attributed to the diversity in the research designs. This study focuses on the peak-time 

energy consumption observed in a short intervention period (i.e., about one week), while 

their findings are based on daily energy consumption observed over a longer period. The 
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long period intervention allows households to reduce energy consumption by (i) replacing 

durable electric goods, (ii) changing their behavior regarding how to use existing goods, 

or (iii) both. In contrast, the short period intervention is likely to only encourage the 

second effect. Compared to behavioral changes, replacing durable appliances can result 

in a larger reduction in energy consumption. The fact that households with high mean 

electricity usage are more likely to replace appliances in the case of a long-period 

intervention can explain their significantly different results. 

With the estimated forests, we can predict the household-specific treatment effects of 

both interventions, which determine which intervention is preferable for each household 

in terms of treatment effects. Columns 1 and 2 of Table 5 represent the treatment effects 

realized if all households are uniformly assigned to one intervention and intervention is 

assigned only to households with negative treatment effects, respectively. The first and 

second rows of Columns 1 and 2 show the results of the rebate and nudge interventions, 

respectively. In addition, the third row presents the treatment effects realized if an 

intervention with larger effects is assigned. Note that the forest of the nudge intervention 

is separately estimated after splitting the nudge and control groups into three different 

subsamples. As discussed in Section 3, the impact of information regarding the difference 

in energy consumption relative to similar households on energy saving depends on 

whether a household consumes more or less electricity relative to similar households (see 

Table 2). To capture this difference, we divide the sample into three subsamples according 

to whether a household consumes more, less, or the same as similar households, and we 

estimate three corresponding forests using the GRF algorithm. 

 

<Table 5 Improvement in treatment effects by targeting> 

 

“Uniform” and “Targeting” of the rebate intervention coincide at −5.02％ because, as 

shown in Panel A of Figure 4, the rebate intervention results in negative effects for all 

households. In contrast, as the nudge intervention generates larger heterogeneity, by 

targeting only those households whose predicted treatment effects are negative, we can 

improve the treatment effects from −1.25％ to −3.29%. Finally, by applying optimum 

targeting, the treatment effects can be improved to −5.61%. This improvement is 

attributed to the assignment of households whose predicted treatment effects are positive 

if assigned to the nudge group to the rebate group and to the assignment of households 

whose predicted treatment effects are larger for the nudge intervention to the nudge group. 

The optimum assignment allocates 73.6% of households to the rebate intervention and 

the rest to the nudge intervention. 
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A question arises, then, regarding how a policymaker should implement targeting using 

observational household characteristics. In Table 6, we compare mean household 

characteristics over groups assigned to a treatment based on optimum targeting. Panels A 

and B of Table 6 present characteristics that are statistically significant at least at the 10% 

level.29 Panel A includes electricity-usage-related characteristics, while Panel B relates 

to other household characteristics. Panel C lists the key variables presented in Figure 5, 

the mean for which is statistically indistinguishable among groups. 

 

<Table 6 Comparison of household characteristics by targeting> 

 

The results presented in Panel A suggest that households whose mean electricity usage 

during the pre-event period is relatively high or whose consumption in early winter is 

larger than that of similar households should be assigned to the rebate intervention rather 

than the nudge intervention. This result is also implied by Panel B of Figures 6 and 7, 

which shows that the nudge intervention does not encourage energy saving for households 

with high mean electricity usage in the pre-event period or larger consumption relative to 

similar households in early winter. In contrast, Panel A suggests that households whose 

mean electricity usage in the pre-event period is relatively low or whose consumption is 

less than that of similar households should be assigned to the nudge intervention rather 

than the rebate intervention. Panel B of Figures 6 and 7 also shows that the nudge 

intervention encourages energy saving for households with low mean electricity usage in 

the pre-event period or lower consumption relative to similar households. Thus, targeting 

based on electricity consumption can improve the treatment effects.30 

The results in Panel A of Table 6 can be explained by other household characteristics 

listed in Panel B of Table 6. Compared to households assigned to the nudge group based 

on targeting, households in the rebate group tend to have older houses, larger household 

size, larger home size, double-story houses, and older heads of household. These 

characteristics are expected to be positively correlated with energy consumption. For 

example, the age of the house should be positively correlated with the age of durable 

electric goods, the home size should be proportional to the number of rooms, and the 

elderly probably stay home longer than the young. The larger the values of these 

characteristics, the larger the absolute values of the treatment effects, thus exhibiting the 

                                                      
29 A complete table is reported in Appendix B. 
30 In Appendix C, we confirm the correlations between these electricity-usage-related 

characteristics and the treatment effect heterogeneity with the sample splitting approach 

proposed by Chernozhukov et al. (2019). 
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same association between electricity-usage-related characteristics and treatment effects. 

The variables listed in Figure 5, the mean for which is statistically indistinguishable 

among the groups (i.e., variables listed in Panel C of Table 6), include the number of air 

conditioners and laptops, mean bills for electricity and gas, gender, income, and 

possession of solar panels. Although these characteristics are important for growing trees, 

the lack of statistical difference suggests that we cannot use such information for targeting. 

The results suggest two approaches to targeting. The first approach is based on the 

simple mean energy consumption during the pre-event period or other observable 

household characteristics. The treatment effects can be improved, for example, by 

assigning the rebate intervention to households whose mean energy consumption is high 

or those who own an older or larger house and by assigning the nudge intervention to the 

remaining households. The second approach exploits information on the difference in 

electricity usage relative to similar households. The discussion so far reveals that such 

difference is determinant for explaining treatment effect heterogeneity (see Figure 7 and 

Table 6). We find similar households by applying RF based on electricity-usage-related 

variables and other household characteristics. This approach allows us to improve the 

treatment effects. 

 

6. Conclusion 

 

The findings of this study imply that the impacts of nonmonetary interventions can 

differ from those of monetary interventions in terms of heterogeneity. Hence, a 

policymaker using these interventions to internalize negative externalities as a public 

policy should not assess policy impacts based only on their mean effects. In addition, our 

results indicate that the impacts of monetary and nonmonetary interventions can be 

significantly improved by sophisticated targeting, which utilizes machine learning. The 

proposed targeting is practical, at least in the context of energy saving. A policymaker can 

efficiently manage demand by first predicting energy-saving behaviors during the high-

demand season (e.g., mid-winter) with information on energy consumption during the 

preseason (e.g., early winter) and household characteristics and then assigning either 

monetary or nonmonetary interventions to each household based on these predictions. 

The proposed targeting assigns an intervention to each household according to its 

predicted impacts. However, such differentiation faces a tradeoff between predicted 

improvement and costs (computation and information collection). The desirable degree 

of sophistication of the targeting procedure is an open issue. In addition, extensive 

differentiation in public policies might cause legal or ethical concerns (e.g., complaints 
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against unequal or unfair interventions). A policymaker needs to discuss these issues 

carefully before implementing targeting and ensure the transparency of the differentiation 

process. Nonetheless, a policy design involving machine learning and targeting based on 

observable household characteristics to make maximum use of nonmonetary 

interventions may stand as a new form of policy mix.  

We conclude this study by suggesting directions for future research. First, we separately 

evaluate the effects of monetary and nonmonetary interventions, and it is a natural 

extension of the current study to jointly measure them. The effects of the joint intervention 

might not be a simple summation of the effects of two separate interventions due to the 

crowding-in or -out effects of each intervention (Dolan and Metcalfe, 2015; Brandon et 

al., 2019). Specifically, treatment effect heterogeneity of the joint intervention can differ 

from the heterogeneities we detect in this study and would be of great interest to 

policymakers. Second, although we investigate the effects and heterogeneities of the 

short-period interventions, an understanding of those of the long-period interventions is 

valuable for policymakers to further improve policy impacts. As discussed in Section 5, 

energy-saving behaviors can differ if the interventions last for a longer period, possibly 

leading to different treatment effect heterogeneities. Therefore, future work based on 

long-period interventions could add interesting findings. 
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Figure 1. Timeline and procedures of the experiment 
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Figure 2. Energy report for the control and rebate groups 

 

 

 

Note: This figure is translated into English from the Japanese energy report. 
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Figure 3. The Energy Report for the nudge group 

 

 

 

Note: This figure is translated into English from the Japanese energy report. 
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Figure 4. Distributions of heterogenous treatment effects 

 

  
(A) Rebate (B) Nudge 
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Figure 5. Key variables for growing trees 

 

  

(A) Rebate (B) Nudge 
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Figure 6. Mean electricity usage in the pre-event period and treatment effects  

 

 

  
(A) Rebate (B) Nudge 
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Figure 7. Difference in electricity usage and treatment effects 

 

  
(A) Rebate (B) Nudge 
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Table 1. Summary statistics by control group and treatment groups  

 

 

Note: The winter consumption pattern of electricity use begins to be observed in the “Early Winter” 

season in Japan. We use this period’s data for calculating social comparison information in the energy 

report for households in the nudge group. “Pre-Event Period” data are used for baseline consumption 

to estimate the ATE. “Rebate Baseline” data are used for calculating rewards for energy conservation 

for households in the rebate group, who are informed regarding the rebate calculation rule after January 

24. 

 

  

 

Control 

(N=327) 

 

Rebate 

(N=313) 

 

Nudge 

(N=314) 
 

Average 

 

Difference p-value 

 

Difference p-value 

Early Winter 

(December 1–14) 

       

Electricity use (kWh /day) 13.818 

 

0.084 0.909 

 

−0.114 0.877 

Electricity use (kWh /peak-time) 2.761 

 

0.010 0.941 

 

0.006 0.967 

Pre-Event Period 

(January 1–23) 

       

Electricity use (kWh /day) 16.876 

 

0.091 0.920 

 

0.009 0.992 

Electricity use (kWh /peak-time) 3.343 

 

−0.009 0.957 

 

0.051 0.770 

Rebate Baseline 

(January 17–23) 

       

Electricity use (kWh /day) 17.029 

 

0.082 0.929 

 

0.018 0.984 

Electricity use (kWh /peak-time) 3.383 

 

−0.054 0.750 

 

0.072 0.688 

Demographic Characteristics        

Household size (persons) 2.700 

 

0.012 0.898 

 

−0.028 0.772 

Number of A/Cs 2.994 

 

0.143 0.294 

 

0.025 0.855 

Home size (Square meter) 116.667 

 

−2.242 0.551 

 

−0.297 0.938 

Household income (JPY/million) 6.343 

 

−0.366 0.232 

 

−0.070 0.828 

All electric house (Dummy) 0.440  −0.054 0.168  −0.039 0.317 
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Table 2. ATEs of rebate and nudge 

 

 All household 

 

Subgroup 

 N=954 

 

Less (N=581) 

 

More (N=355) 

Rebate −0.043 *** 

 

−0.056 *** 

 

−0.025  

 (0.013)  
 

(0.016)  
 

(0.023)  

Nudge −0.007  
 

−0.038 ** 

 

0.036  

 (0.013)  
 

(0.015)  
 

(0.024)  

         

Observations 214,173  
 

126,598  
 

83,372  

 

Note: **p<0.05, ***p<0.01. This table shows the DID estimation results for Equation (2). Standard 

errors are reported in parentheses. We used the natural logarithm of electricity usage for the dependent 

variable; hence, the treatment effects may be approximately interpreted in percentage terms. 
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Table 3. ATEs computed by the GRF algorithm 

 

 

 

 

 

 

Note: ***p<0.01. The number of observations is 224,400. Due to the normalization by households’ 

mean consumption during the pre-event period, the results in this table measure percent point changes. 

Standard errors are reported in parentheses. 

 

 

  

 Rebate  Nudge  

Average treatment effects −0.052 *** −0.014  

 (0.016)  (0.015)  
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Table 4. Results of the slope test 

 
 

ATE (𝛾) 

 

Heterogeneity (𝜂) 

Rebate −0.044 

 

1.641 
 

[−0.073, −0.015] 

 

[0.050, 3.296] 
    

Nudge −0.008 

 

1.410 
 

[−0.032, 0.016] 

 

[0.051, 2.793] 

 

Note: The numbers in brackets represent the 90% confidence interval proposed by Chernozhukov et 

al. (2019). The number of iterations is 1000. 
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Table 5. Improvement in treatment effects by targeting 

 
 

Net treatment effects 

 Uniform Targeting 

Rebate −5.02% −5.02% 

 (1.49) (1.49) 

Nudge −1.25% −3.29% 

 (5.77) (3.60) 

Optimum targeting −5.61% 

 (2.33) 

 

Note: “Uniform” measures the treatment effects predicted under the scenario in which all households 

are uniformly assigned to one intervention. “Targeting” measures the treatment effects that are realized 

if an intervention is assigned only to households with negative treatment effects. “Optimum Targeting” 

represents the treatment effects realized if an intervention with larger effects is assigned. 
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Table 6. Comparison of household characteristics by targeting 

 
 

Rebate 

(N = 688) 

Nudge 

(N = 247) 

Difference S.E. p-value 

A. Energy Consumption 

Pre-event mean (kWh) 0.469 0.292 0.178 0.016 0.000 

Early winter difference (kWh) 0.022 −0.300 0.322 0.018 0.000 

      

B. Significant Variables for Targeting 

Age of house (years) 22.093 15.320 6.773 0.703 0.000 

Household size (persons) 2.756 2.583 0.173 0.089 0.053 

Home size (m2) 120.051 108.806 11.245 3.612 0.002 

Double-story (Dummy) 0.712 0.599 0.113 0.036 0.002 

Age (years/10) 5.269 4.676 0.593 0.089 0.000 

      

C. Insignificant Variables Listed in Figure 5 

Num. of A/Cs 3.129 2.951 0.178 0.134 0.186 

Num of laptops 1.391 1.336 0.055 0.078 0.483 

Electricity bill (JPY/10,000) 0.971 0.899 0.072 0.063 0.260 

Gas bill (JPY/10,000) 0.319 0.285 0.034 0.025 0.166 

Male (Dummy) 0.783 0.769 0.014 0.031 0.648 

Income (JPY/10 million) 0.629 0.608 0.021 0.026 0.435 

Solar power (Dummy) 0.246 0.243 0.003 0.032 0.932 

 

Note: The variables in Panel B exhibit statistically significant differences up to the 10% level among 

groups. A complete table is presented in Appendix B. 

  



 

41 

Appendix A: Additional information 

 

Figure A1. The latest average high and low temperatures in Nagoya, Japan and 

Washington DC, United States 

 

 

 

Note: This figure shows the latest temperatures (F) from April 2019 to March 2020, obtained from the 

“Tokyo Climate Center, WMO Regional Climate Center, World Climate.” 

https://ds.data.jma.go.jp/gmd/tcc/tcc/products/climate/index.html 

 

  

https://ds.data.jma.go.jp/gmd/tcc/tcc/products/climate/index.html
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Figure A2. The messages and rebate rule information for the rebate group 

 

 

 

Note: This figure reports the message regarding the rebate calculation rule for the households in the 

rebate group (R), translated into English from the original Japanese version. The households received 

this message sometime between January 24 and January 30.  
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Appendix B. Additional tables 

 

Table B1. Comparison of mean household characteristics across groups assigned by 

targeting 

 
Rebate 

(N = 688) 

Nudge 

(N = 247) 
Difference S.E. p-value 

A. Baseline Variable 

Pre-event mean (kWh) 0.469 0.292 0.178 0.016 0.000 

Pre-event max (kWh) 1.191 0.949 0.242 0.043 0.000 

Pre-event min (kWh) 0.103 0.038 0.065 0.006 0.000 

Pre-event S.D. (kWh) 0.215 0.176 0.039 0.008 0.000 

Difference in early winter (kWh) 0.022 −0.300 0.322 0.018 0.000 

B. Significant Variables for Targeting 

Age of house (years) 22.093 15.320 6.773 0.703 0.000 

Age (years/10) 5.269 4.676 0.593 0.089 0.000 

TOU (dummy) 0.411 0.482 −0.070 0.037 0.057 

Double-story (dummy) 0.712 0.599 0.113 0.036 0.002 

Home size (m2) 120.051 108.806 11.245 3.612 0.002 

HW: Eco-cute (dummy) 0.326 0.441 −0.116 0.036 0.002 

HW: Eco-jaws (dummy) 0.131 0.085 0.046 0.022 0.037 

IH heater (dummy) 0.390 0.457 −0.068 0.037 0.066 

Accumulator (dummy) 0.026 0.057 −0.031 0.016 0.057 

Num. of PCs 2.109 1.883 0.226 0.092 0.014 

Num. of desktop PCs 0.718 0.547 0.171 0.057 0.003 

Num. of driers 0.346 0.279 0.067 0.034 0.052 

Num. of refrigerators 1.286 1.190 0.096 0.041 0.019 

Num. of gas ovens 0.109 0.053 0.056 0.019 0.003 

Num. of TVs 2.314 2.016 0.298 0.095 0.002 

Num. of solar calorifiers 0.041 0.012 0.029 0.010 0.006 

Num. of heaters 1.016 0.810 0.206 0.063 0.001 

Num. of pets 0.814 0.862 −0.048 0.027 0.069 

Attitude (1, 2, …,5) 0.802 0.858 −0.056 0.027 0.038 

Job: employee (dummy) 0.404 0.571 −0.167 0.037 0.000 

No job (dummy) 0.321 0.211 0.111 0.032 0.000 

Educ 1 (dummy) 0.311 0.231 0.080 0.032 0.013 

Household size (persons) 2.756 2.583 0.173 0.089 0.053 

C. Insignificant Variables Listed in Figure 5 

Electricity bill (JPY/10,000) 0.971 0.899 0.072 0.063 0.260 

Gas bill (JPY/10,000) 0.319 0.285 0.034 0.025 0.166 

Num. of A/Cs 3.129 2.951 0.178 0.134 0.186 

Num. of laptops 1.391 1.336 0.055 0.078 0.483 

Male (dummy) 0.783 0.769 0.014 0.031 0.648 

Income (JPY/10 million) 0.629 0.608 0.021 0.026 0.435 

Solar power (dummy) 0.246 0.243 0.003 0.032 0.932 
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Table B2. Comparison of the mean electricity usage and mean household 

characteristics across subgroups 

 
 

Less 

(N=581) 

More 

(N=355) 

Difference p-value 

Early Winter     

Daily electricity use (kWh) 11.013 18.498 −7.485 0.000 

Peak-time electricity use (kWh) 1.918 4.167 −2.248 0.000 

Pre-Event Period     

Daily electricity use (kWh) 13.914 21.939 −8.025 0.000 

Peak-time electricity use (kWh) 2.454 4.848 −2.394 0.000 

Rebate Baseline     

Daily electricity use (kWh) 14.025 22.186 −8.161 0.000 

Peak-time electricity use (kWh) 2.471 4.911 −2.439 0.000 

Demographic characteristics     

Household size (persons) 2.570 2.927 −0.357 0.000 

Num. of A/Cs 2.966 3.203 −0.237 0.045 

Home size (m2) 112.806 121.507 −8.702 0.006 

Income (JPY/ million) 6.060 6.500 −0.440 0.095 

All electric house (dummy) 0.386 0.448 −0.062 0.060 
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Table B3. Mean household characteristics at various quartiles of the treatment 

effects 

 
 

Rebate 

 

Nudge 
 

1st 2nd 3rd 4th 

 

1st 2nd 3rd 4th 

Treatment Effects −0.069 −0.056 −0.045 −0.031 

 

−0.064 −0.023 −0.001 0.027 

Energy Consumption 

Pre-event mean (kWh) 0.184 0.323 0.484 0.699 

 

0.210 0.358 0.489 0.633 

Pre-event max (kWh) 0.602 0.914 1.275 1.719 

 

0.708 1.020 1.232 1.549 

Pre-event min (kWh) 0.018 0.052 0.094 0.179 

 

0.016 0.061 0.116 0.150 

Pre-event S.D. (kWh) 0.114 0.165 0.230 0.310 

 

0.136 0.185 0.221 0.277 

Early winter difference (kWh) −0.283 −0.116 0.008 0.140 

 

−0.337 −0.141 0.033 0.194 

Other Household Characteristics 

Age of house (years) 21.194 18.641 21.122 20.258 

 

17.400 19.530 22.158 22.135 

Male (dummy) 0.645 0.744 0.838 0.893 

 

0.679 0.769 0.778 0.893 

Age (years/10) 4.838 4.910 5.286 5.416 

 

4.650 5.090 5.265 5.446 

Electricity bill (JPY/10,000) 0.553 0.805 1.070 1.382 

 

0.698 0.895 1.042 1.174 

Gas bill (JPY/10,000) 0.238 0.368 0.331 0.303 

 

0.309 0.290 0.325 0.317 

Home size (m2) 0.887 1.016 1.232 1.551 

 

0.976 1.121 1.270 1.317 

Solar power (dummy) 0.115 0.205 0.248 0.412 

 

0.171 0.248 0.214 0.348 

Num. of A/Cs 2.115 2.684 3.269 4.266 

 

2.453 2.970 3.372 3.536 

Num. of PCs 1.714 1.897 2.060 2.528 

 

1.731 1.957 2.205 2.305 

Num. of laptops 1.175 1.406 1.325 1.601  1.261 1.261 1.453 1.532 

Num. of TVs 1.641 1.957 2.316 3.030 

 

- - - - 

Num. of WCs 0.927 1.188 1.415 1.704 

 

- - - - 

Num. of washers - - - - 

 

0.457 0.568 0.585 0.438 

Income (JPY/10 million) 0.492 0.596 0.625 0.781 

 

0.541 0.591 0.659 0.702 

Household size (persons) - - - - 

 

2.274 2.577 2.902 3.090 
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Appendix C. Association between heterogeneous treatment effects and 

household characteristics 

 

Table C1. Classification analysis 

 
 

Mean electricity use in the pre-event period (kWh) 

 

Difference from similar households (kWh) 
 

Q1 Q4 Q1-Q4 

 

Q1 Q4 Q1-Q4 

Rebate 0.223 0.662 −0.441 

 

−0.243 0.118 −0.362 
 

[0.216, 0.231] [0.645, 0.678] [−0.459, −0.424] 

 

[−0.259, −0.227] [0.101, 0.134] [−0.385, −0.338] 
        

Nudge 0.197 0.667 −0.471 

 

−0.347 0.202 −0.549 
 

[0.190, 0.204] [0.647, 0.686] [−0.492, −0.450] 

 

[−0.360, −0.333] [0.185, 0.219] [−0.571, −0.528] 

 

Note 1: The sample splitting approach proposed by Chernozhukov et al. (2019) allows us to examine 

the relationship between the treatment effects and various covariates, which is called classification 

analysis (CLAN). Households are divided into subgroups based on the size of the predicted treatment 

effects. Then, the means of the covariates of interest are compared across groups. The CLAN allows 

researchers to find the types of households that are most affected by a treatment. In this study, we 

focus on mean electricity use during the pre-event period and the difference in electricity usage relative 

to similar households in early winter in Table C1. To calculate the values in Table C1, we divide 

households based on quartiles and calculate the means of the characteristics for households in the top 

(Q1) and bottom (Q4) quartiles. 

 

Note 2: The numbers in brackets represent the 90% confidence interval proposed by Chernozhukov et 

al. (2019). The number of iterations is 1000. Table C1 shows the mean electricity use during the pre-

event period. The difference in electricity usage relative to similar households is statistically different 

among groups. These results support the validity of targeting, as discussed in Section 5. 
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