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Abstract

This paper investigates the properties of intergenerationally equitable dis-
counting by using an axiomatically well-founded welfare function which
was originally developed by Epstein (1983), and more recently extended
by Bommier and Zuber (2008). In stead of seeking for the appropriate
value of social rate of time preference, intergenerational equity is incorpo-
rated at axiomatic level. I show that the intergenerational-equity-consistent
(IE-consistent) discount rate can be higher or lower than the standard no-
time-preference case without appealing to uncertainty. The relationship
between IE-consistent discount rates and risk of world extinction is also
examined with an emphasis on the case where the hazard rate is endoge-
nously determined. With an application to climate change, I show that
endogenous hazard rate can increase the discount rate, which implies rel-
atively less stringent carbon abatement as the optimal climate policy.
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1 Introduction

The first comprehensive study of economic implications of climate change was
launched by William R. Cline. In his pioneering work, Cline (1992) conducted
the cost-benefit analysis of pollution abatement policies, and Cline (1993) sum-
marized the findings that aggressive abatement is worthwhile even though the
future is much richer, because potential massive damages warrant the costs. On
the other hand, William D. Nordhaus, who has been studying the economics
of climate change for decades, tackled this problem based on his Dynamic Inte-
grated Model of Climate and the Economy (DICE), and reached a quite different
conclusion. The main message of his series of influential studies is that any rad-
ical reduction of carbon emissions in the near future should be avoided despite
the serious threats to the global economy posed by climate change. In fact,
the most well-known policy implication given by Nordhaus (1994) is that con-
trols on carbon-intensive economic activities should be put into effect in an in-
creasing but gradual manner, starting several decades from now. More recently,
Stern (2007) tried to revive the spirit of Cline’s approach with insights from
new scientific findings and concluded that strong and immediate actions to curb
global carbon emissions can be justified based on their framework. Although the
framework and assumptions adopted by Stern were severely criticized by many
economists such as Dasgupta (2007), Weitzman (2007), and Nordhaus (2007),
his contribution to the literature rekindled the debate over appropriateness of the
existing approaches.

One of the most controversial issues in the literature is how to incorporate
the idea of intergenerational equity into the policy evaluation framework. Since
the impact of climate change easily stretches across generations, it is inappropri-
ate to evaluate economic impacts of alternative climate policies solely based on
the view point of the present generation. In the literature, such intergenerational
consideration has been boiled down to the choice of one particular parameter
value: social rate of time preference. Following Sidgwick (1907) and Pigou
(1920), some economists have been arguing that the interest of future genera-
tions should be taken into account by setting the rate of social time preference
as small as possible (Ramsey, 1928). But others including Nordhaus (2008)
claim that the discount rate must be based on actual behavior in markets rather
than any idealized philosophy about the treatment of future generations.

More generally, not only the rate of social time preference, but also the dis-
count rate as a whole is important in evaluating climate policies. The discount
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rate is defined as

ρt(x) :=
∂W (x)

∂ct

/
∂W (x)

∂ct+1

− 1, (1.1)

where x = (c1, c2, c3, . . .) is a consumption path andW (x) is a welfare function.
The commonly used form of welfare function is the additive and separable one:

W (x) =
∞∑
t=1

(
1

1 + δ

)t−1

v(ct). (1.2)

Given this specification, the discount rate is computed as

ρt(x) =
v′(ct)

v′(ct+1)
(1 + δ) − 1

≈ δ + ηt(x)gt(x) (1.3)

where

ηt(x) := −v
′′(ct)ct
v′(ct)

, gt(x) :=
ct+1 − ct

ct
.

Here, ηt(x) is the elasticity of the marginal utility of consumption. Higher value
of ηt(x) implies less value of additional consumption for rich people. In (1.3),
this parameter is multiplied by gt(x), the consumption growth rate. This means
that when consumption is expected to grow, the value of future consumption is
discounted at higher rate. Hence, the second term of (1.3) as a whole represents
the aversion to consumption inequality.

The rate of social time preference is captured by the other term, δ, and this
is the parameter that plays a crucial role in evaluating climate policies. Since
the planning horizons of climate policies are typically very long, even a small
difference in δ could make a huge difference. Actually, most of the discrepancy
among the conclusions in the past studies can be explained by the difference
in their choice of this parameter. Cline (1992) and Stern (2007) set δ ≈ 0 in
consideration of intergenerational equity, and consequently reached almost the
same conclusions. On the other hand, Nordhaus (1994) chose δ = 0.03 to ensure
consistency between the model and real-world economic data, leading to very
different policy implications. As an illustration, the optimal paths of emission
reduction rate based on a simplified version of DICE model for each case are
plotted in Figure 1 below. Obviously, there is a huge difference between the
two cases. If we stick with the choice of δ = 0, which is usually considered
necessary to meet the requirement of intergenerational equity, seemingly a bit
too ambitious carbon abatement is required compared with the case of δ = 0.03.
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Figure 1: Optimal Abatement Rates for δ = 0 and δ = 0.03

The question is whether there is any way of reconciling those two approaches
without violating the requirement of intergenerational equity. To answer this
question, it seems necessary to reconsider assumptions adopted in the standard
argument on discounting. In particular, the functional form of welfare function
should be examined. As is clear from (1.1), discount rate largely depends on the
specification of welfare function. The discussion over discounting in the litera-
ture implicitly premises that the welfare function can appropriately be specified
as (1.2), and this is the very reason why the intergenerational equity immediately
implies the choice of δ = 0. If the essence of intergenerational equity is not all
captured by the standard model, other forms of welfare functions could provide
different ways of incorporating concerns for future generations.

The origin of the additive and separable discounted welfare function is traced
back to Samuelson (1937), and its axiomatic foundation was later given by
Koopmans (1960). Koopmans (1960) demonstrated that the set of axioms as-
sumed behind the use of the standard welfare function necessarily implies impa-
tience of the underlying preference. In line with this argument, Diamond (1965)
showed that impartial treatment among generations is not compatible with very
weak axioms imposed on the orderings over infinite utility streams. This type
of unavoidable impatience was also reconfirmed by Epstein (1983) in the con-
text of preference over uncertain consumption streams. More recently, however,
Bommier and Zuber (2008) derived a recursive form of welfare function which
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satisfies the axiom of anonymity, and showed that preference for catastrophe
avoidance justifies higher discount rates.

In this paper, I investigate the properties of intergenerationally equitable dis-
counting by using an axiomatically well-founded welfare function which was
originally developed by Epstein (1983), and later extended by Bommier and
Zuber (2008). In stead of choosing δ = 0 in the standard welfare function, I
incorporate intergenerational equity at axiomatic level. This approach makes it
possible to derive the intergenerationally equitable discount rates in a more flexi-
ble manner. Moreover, the risk of world extinction, which is positive but usually
tiny, is also incorporated. As Yaari (1965) suggested, exogenous hazard rate of
world ending can be a basis for higher discounting. I examine this argument
under a fairly general framework of intergenerationally equitable discounting.
In particular, I take a close look at the case where the risk of world extinction is
endogenously determined. This is of particular relevance to climate change be-
cause, as is discussed by Weitzman (2009), increasing temperature could cause
some climatic catastrophe in the future.

The paper is structured as follows. Section 2 derives a class of welfare func-
tions which represent a ranking over possible outcomes in a way consistent with
intergenerational equity. Based on the result of section 2, section 3 provides the
intergenerationally equitable discount rates and analyzes their properties. The
difference from the commonly-used discount rate is studied. The relationship
between uncertainty and intergenerationally equitable discounting is also inves-
tigated. Section 4 applies this welfare function to the evaluation of climate poli-
cies and derives some implications for optimal carbon abatement paths. Section
5 concludes.

2 Welfare Function with Intergenerational Equity

Consider a society with a sequence of generations or cohorts. Let ct ∈ Rn be the
quantity of n-dimensional goods consumed by t-th generation. WithX := {x =

(c1, c2, c3, . . .) : ct ∈ [0, c̄]n ∀t}, we denote the set of bounded consumption
streams. We restrict our attention to the case where the world ends at some point
in the future and consumption will never occur thereafter. To be more precise,
the outcome set in our analysis is given by

X∗ := {x = (c1, c2, c3, . . .) ∈ X : ct = 0 ∀t ≥ T for some T <∞}.

It is worth noting that X∗ includes practically every outcome which could
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be realized in the real world. Since the end-time T can be arbitrarily large, con-
sumption can be positive up until farthest in the future one could think of. The
assumption of “world end” is introduced here just for the instrumental purpose
of excluding positive consumption in the infinite future. Or perhaps we could
reasonably assume the world actually ends in some very distant future. As is
indicated by Sackmann et al. (1993), the Earth is likely to have a dire conse-
quence in the next several billion years as the Sun gradually goes through its
evolutionary life-cycle.

Also notice that the introduction of world end is consistent with the assump-
tion of bounded consumption set. If we suppose the world lasts forever, it is
not very reasonable to assume a finite upper bound on consumption set because
the economy can grow without a limit. Once the possibility of world ending
is embraced, however, the infinitely large level of consumption can be readily
ruled out at least from a practical point of view. As long as the upper bound c̄ is
taken to be sufficiently large, we could safely say that any realistic consumption
stream would not hit the bound before the world ends.

Let M(X∗) be the set of probability measures on the measurable space
(X∗, R(X∗)), whereR(X∗) denotes the Borel σ-algebra ofX∗. The social pref-
erence or ranking % is a binary relation defined on M(X∗). As usual, indiffer-
ence and strict preference are denoted by ∼ and � respectively. Let px ∈M(X∗)

denote the probability measure that assigns probability 1 to an outcome x ∈ X∗.
For each c1 ∈ [0, c̄]n and p ∈M(X∗), we define (c1, p) as a probability measure
with which the consumption level c1 occurs with certainty for the first generation
while consumption for later generations is realized according to p.

To derive a welfare function which represents the ranking %, we first assume
% satisfies the following basic axioms:

Monotonicity: If x > x′, then px � px′ .

Stationarity: There exists ĉ1 ∈ [0, c̄]n such that for all p, q ∈ M(X∗),
(ĉ1, p) % (ĉ1, q) if and only if p % q.

Independence: For all c1, c′1 ∈ [0, c̄]n and p, q ∈M(X∗), (c1, p) % (c1, q)

if and only if (c′1, p) % (c′1, q) .

Expected Utility: There exists a continuous function U : X∗ → R such
that

∫
X∗ U(x)dp ≥

∫
X∗ U(x)dq if and only if p % q, and U is unique up to

positive affine transformations.
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These axioms are almost the same as the ones in Epstein (1983). The only dif-
ference is that the sensitivity axiom is now replaced by the monotonicity axiom.
This stronger assumption gives a more precise structure to the form of welfare
function.

In order to make sure that every generation is treated equally, we need to in-
troduce some axiom of intergenerational equity. Following Bommier and Zuber
(2008), let π : N → N be a finite permutation over the set of natural numbers
and Π denote the set of all such permutations. For each x = (c1, c2, . . .) ∈ X∗

and π ∈ Π, define x(π) as

x(π) := (cπ(1), cπ(2), . . .) ∈ X∗.

Our axiom of intergenerationl equity is then given by

Intergenerational Equity: For any x ∈ X∗ and π ∈ Π, px ∼ px(π).

Note that this axiom ensures intergenerational equity in a bit stronger sense than
the one in Bommier and Zuber (2008). Their anonymity axiom only requires
impartial treatment among those generations who born before the world end. In
our axiom, on the other hand, equal treatment between pre-world-ending gener-
ations and post-world-ending generations are required as well.

The following proposition is a straightforward extention of theorem 1 in Ep-
stein (1983):

Proposition 1. The ranking % sasisfies the axioms above if and only if the von
Neuman-Morgenstern utility function U can be expressed in the form

U(x) =
∞∑
t=1

v(ct)
t−1∏
τ=1

(1 −Kv(cτ )) ∀x ∈ X∗, (2.1)

where v : [0, c̄]n → R+ is an increasing function with v(0) = 0 andK < 1/v(c̄).

Proof. See Appendix A.1.

The functional form (2.1) is basically the same as the one derived by Bom-
mier and Zuber (2008). The corresponding welfare function is now given by

W (p) =

∫
X∗
U(x)dp ∀p ∈M(X∗).

Since the concern for future generations is already incorporated at axiomatic
level, the ranking over alternative outcomes provided by this function meets the
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requirement of intergenerational equity. Hence, the discount rate derived from
this welfare function is always consistent with intergenerational equity. We call
it IE-consistent discount rate.

Notice that the parameterK can be positive or negative, and such choice does
not change the fact that the ranking is consistent with intergenerational equity.
This point makes a sharp contrast to the additive and separable form of welfare
function, where impartial treatment among generations automatically implies
δ = 0. Bommier and Zuber (2008) linked K with the aversion to catastrophe.
I will present another interpretation of this new parameter shortly. It should
also be emphasized here that K is bounded above by 1/v(c̄). Bearing in mind
that v(c) is increasing in c and c̄ can be a very large number, this boundedness
implies that K must be very small if it is positive.

3 IE-consistent Discount Rates

We are now ready to derive the IE-consistent discount rate and investigate its
properties. In what follows, we restrict our attention to the case with n = 1 for
simplicity. Also, we assume v′′(c) < 0 for any c ∈ [0, c̄] and write

UT (x) :=
T∑
t=1

v(ct)
t−1∏
τ=1

(1 −Kv(cτ )) ,

for each T ∈ N.

3.1 Deterministic Case

We first analyze the case where consumption streams are non-stochastic. In
this case, it will be useful to use ρ0

t (x) := ηt(x)gt(x) as a benchmark. This
is the discount rate which is considered to be intergenerationally equitable for
the standard welfare function. We are interested in if and in what condition the
IE-consistent discount rate can be higher or lower than this benchmark rate.

Before presenting the result, notice that the welfare function for non-stochastic
consumption streams is equivalent to the von Neuman-Morgenstern utility func-
tion:

W (px) =

∫
X∗
U(z)dpx =

∞∑
t=1

v(ct)
t−1∏
τ=1

(1 −Kv(cτ )) . (3.1)

Given this welfare function, a bit tedious computation yields the following re-
sult:
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Proposition 2. Given a deterministic consumption path x ∈ X∗, the IE-consistent
discount rate ρdet (x) is given by

ρdet (x) =
v′(ct)

v′(ct+1)

1 −Kv(ct+1)

1 −Kv(ct)
− 1,

and thus, as long as ct < ct+1, ρdet (x) is higher than ρ0
t (x) if and only if K is

negative.

Proof. See Appendix A.2.

The first thing to be noted here is that higher discount rates are justifi-
able even when the impartial treatment among generation is required. Hence,
rephrased in the context of standard welfare function, the proposition says that
positive value of δ in equation (1.3) does not necessarily imply the violation of
intergenerational equity. On the other hand, however, negative value of δ is also
justifiable. In that case, the discount rate is even lower than the benchmark rate,
which is usually considered as the lowest discount rate. While the choice of
δ = 0 can also be supported as intergenerationally equitable discounting, such
zero time-preference is not required in general.

This point should be clarified by noting

ρdet (x) ≈ δt(x;K) + ηt(x)gt(x),

where

δt(x;K) := log

[
1 −Kv(ct+1)

1 −Kv(ct)

]
.

Here, δt(x;K) is a counterpart to the time preference δ in the standard discount
rate. This means, in the IE-consistent discount rate, the “time preference” can
be positive or negative and even vary over time. The parameter K plays an
important role, which is illustrated in Figure 2 below. This figure displays the
trajectories of δt(x;K) for different values of K in each case of increasing and
decreasing consumption path.

To obtain some interpretation of K, observe

∂ρdet (x)

∂K
= − v′(ct)

v′(ct+1)

v(ct+1) − v(ct)

(1 −Kv(ct))2
,

and hence
∂ρdet (x)

∂K
Q 0 ⇔ ct Q ct+1.
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Figure 2: δt(x;K) for different K

When consumption increases over time, higher value of K implies lower value
of the discount rate. If the level of consumption is expected to become lower in
the future, on the other hand, higher value of K means higher value of discount
rate. In other words, higher (lower) value of K scales down (scales up) the
aversion to consumption inequality. Therefore, one possible interpretation of
K is that it is another parameter which controls the aversion to consumption
inequality among generations.

It should also be noticed that K provides a linkage between discount rates
and the level of consumption enjoyed by present generation. As is clear from
(1.3), the discount rate in the standard model does not depend on ct as long as
both the elasticity of the marginal utility of consumption, ηt, and the growth rate
of consumption, gt, are fixed. In the IE-consistent discount rate, however, not
only the growth rate of, but also the current level of consumption matters.

To better illustrate this point, suppose both ηt and gt do not depend on today’s
consumption ct. Then

∂δt(x;K)

∂ct
=

Kv′(ct+1)

1 −Kv(ct+1)
ρdet (x),

which is negative if and only if K < 0. Thus negative value of K implies that
the discount rate declines as consumption level rises. In other words, “people
become less envy as they become richer.” WhenK is positive, on the other hand,
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higher level of today’s consumption implies a higher discount rate for consump-
tion of future generations. This could be rephrased as “people become more
averse to inequality of consumption when they become wealthier.” If the former
case (i.e., K < 0) sounds more reasonable than the latter, the welfare func-
tion (3.1) provides a justification for higher discount rate as long as increasing
consumption is expected.

3.2 Uncertain World End

The discussion in the previous subsection suggests the IE-consistent discount
rate can be higher than the benchmark rate without appealing to any kind of
uncertainty. This argument alone, however, might not be able to fill the gap
between the cases of δ = 0 and δ = 0.03. As is illustrated in Figure 2,
the term δt(x;K) can not be arbitrary large. In fact, it is bounded above by
log(v(ct+1)/v(ct)) when the level of consumption grows. Hence, the relation-
ship between uncertainty and the IE-consistent discount rate is still worth in-
vestigating. As Yaari (1965) showed and Bommier and Zuber (2008) reiterated,
uncertainty provides another basis for higher discount rates. If society is subject
to an exogenous risk of extinction in each period, it is reasonable to discount
future consumptions even when impartial treatment among generations is re-
quired. One of the interesting results in this context is that once extinction risk
is incorporated, the role of K is reversed.

In order to investigate this point in more detail, let f : N → [0, 1] be a
probability density function of extinction date. This extinction risk is assumed
to be exogenous at this stage of the analysis. Then the corresponding sequence
{ht}∞t=1 of hazard rates is constructed recursively by

hT = fT

/ T−1∏
s=1

(1 − hs),

where
∏0

s=1(1 − hs) := 1. We assume ht ∈ (0, 1) for all t ∈ N and let H be
the set of all such sequences of hazard rates. When uncertainty exists only in the
extinction date, the welfare function is given by

W (p) =
∞∑
T=1

UT (x)fT

=
∞∑
T=1

T∑
t=1

v(ct)
t−1∏
τ=1

(1 −Kv(cτ ))hT

T−1∏
s=1

(1 − hs),

11



where p ∈ M(X∗) is the probability measure which corresponds to the den-
sity f . Our next proposition clarifies the relationship between the IE-consistent
discount rate, extinction risk, and the parameter K:

Proposition 3. Given a consumption path x ∈ X∗ and a sequence {ht}∞t=1 ∈ H

of hazard rates of extinction date, the IE-consistent discount rate ρext (x) is given
by

ρext (x) =
v′(ct)

v′(ct+1)

1 −Kv(ct+1)

1 −Kv(ct)

(
1 + Φ−1

t (x;K)
)
− 1 (3.2)

where

Φt(x;K) :=
∞∑

T=t+1

hT
ht

(
1 − ht
1 − hT

) T∏
τ=t+1

{[1 −Kv(cτ )] (1 − hτ )} > 0,

and thus uncertainty of extinction date increases discount rates.

Proof. See Appendix A.3.

The role of uncertain extinction date is all captured by the term Φt(x;K) in
(3.2). Since Φt(x;K) is always positive, introduction of uncertainty of this kind
increases the discount rate in general. Hence, even higher value of discount rate
is justifiable compared with the deterministic case studied above. This argument
will be highlighted by considering the case where the hazard rate is constant
over time. If ht = h ∈ (0, 1) for all t ∈ N, then Φt(x;K) may be written as

Φt(x;K) =
∞∑

T=t+1

(1 − h)T−t
T∏

τ=t+1

(1 −Kv(cτ )),

which is decreasing in h. Thus, as depicted in Figure 3 below, higher constant
hazard rate implies higher discount rate.

The parameter K is as important here as in the non-stochastic case and,
interestingly, it works in quite a different way. Notice first

ρext (x) ≈ Φ−1
t (x;K) + ρdet (x),

and recall that ρdet (x) is decreasing in K when the level of consumption is ex-
pected to rise. The first term, Φ−1

t (x;K), on the other hand, is increasing in K
because Φt(x;K) is decreasing in K. Thus, while negative value of K increases
the discount rate through the deterministic version of the IE-consistent discount
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Figure 3: Φ−1
t (x;K) for different K with h′ > h

rate, it suppress the role of uncertainty in the first term. In particular, if K is
negative and (1 − Kv(cτ ))(1 − hτ ) > 1 for all τ > T for some T > t, then
Φ−1
t (x;K) = 0, which means the impact of uncertainty completely disappears.

This could easily happen when the extinction risk is very small and consumption
grows over time.

While proposition 3 clarifies higher discount rates are justifiable when the
hazard rate is positive, it is not obvious what would happen when the hazard
rate at one point of time increases while the one at another point decreases. In
particular, it will be of interest to see the impact on the discount rate when a part
of extinction risk can be transferred from present generation to future generation.
More formally, given a sequence {ht}∞t=1 ∈ H of hazard rates, define another
sequence {h̃t}∞t=1 ∈ H as

h̃τ =


hτ − γ for τ = t

hτ + γ for τ = t+ 1

hτ otherwise,

for some γ > 0. Here {h̃t}∞t=1 represents a sequence of hazard rates after a part
of risk is transferred from generation t to generation t+ 1.

Letting ρext (x) and ρ̃ext (x) be the discount rates respectively corresponding
to {ht}∞t=1 and {h̃t}∞t=1, we have the following proposition:
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Proposition 4. There exists γ > 0 such that

ρ̃ext (x) < ρext (x). (3.3)

Moreover, if
1 − ht+1

ht+1

1 − ht
ht

≥ ht (3.4)

then (3.3) holds for any γ > 0.

Proof. See Appendix A.4.

Proposition 4 says the IE-consistent discount rate should be decreased when
the extinction risk is transferred to future generations. Put differently, higher ex-
tinction risk in the future does not justify higher discount rate when such higher
risk is attributed to some “risk transfer” from present generation. In such a case,
consumption for future generation should rather be discounted at lower rate.

Note that the condition (3.4) is not very restrictive. In fact, it is satisfied by a
wide rage of hazard rates. To be more specific, suppose hτ ≤ 0.5 for τ = t, t+1.
Then

1 − ht+1

ht+1

1 − ht
ht

≥ 1 > ht.

Hence, if the hazard rate is lower than or equal to 0.5 in both periods, the con-
dition is easily met. Since world extinction risk is usually far smaller than half
a chance, we could say any reasonable transfer of extinction risk into the future
decreases the discount rate.

This result has an interesting implication for such problems as climate change.
There exist some ways of reducing carbon concentration in the atmosphere
which seemingly transfer the extinction risk from present generation to future
generations. The carbon capture and sequestration technology is one example.
By capturing emitted carbon dioxide and storing them deep into the ocean, we
will be able to avoid climatic catastrophe in the near term. Such technology,
however, may not be completely reliable, and the vast amount of carbon stored
in the ocean may leak out at some point in the future. The resulting abrupt in-
crease of carbon concentration will be likely to increase the risk of world ending
at that point. Although the overall impact of such technology is ambiguous,
our result indicates that lower discount rates should be used if it increases the
extinction risk in future.
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3.3 Endogenous Uncertainty

In the case of climate change, it seems more reasonable to assume the extinction
risk is endogenously determined. With an application to climate change in mind,
I introduce endogeneity of extinction risk as follows. First, it is natural to assume
that if the level Mt of carbon concentration in the atmosphere rises, the hazard
rate of world extinction increases:

ht(x) = h(Mt) with h′(M) ∈ (0,+∞). (3.5)

While the carbon dioxide in the atmosphere decays at rate of ξ ∈ (0, 1), human-
induced carbon emission Et accumulates in the atmosphere:

Mt+1 = (1 − ξ)Mt + κEt with κ > 0. (3.6)

Finally, we assume carbon emission is proportional to the level of consumption:

Et = σtct with σt > 0, (3.7)

where σt is an index of emission intensity of consumption. We here assume
σt+1 ≤ σt, meaning that the energy efficiency improves over time. Note that
under these assumptions, both hazard rate ht(x) and probability density ft(x)
are determined by the past consumption level (c1, c2, . . . , ct−1).

Before presenting the main result of this subsection, I provide the following
lemma:

Lemma 1. Suppose a sequence {ht(x)}∞t=1 ∈ H of hazard rates is endogenously
determined by (3.5), (3.6), and (3.7). Then, given a consumption path x ∈ X∗,
the IE-consistent discont rate ρent (x) can be written as

ρent (x) = ρext (x) + Θt(x),

where

Θt(x) = Ut+1(x)
∂ft+1(x)

∂ct

/
∂W (x)

∂ct+1

+
∞∑

T=t+2

UT (x)

(
∂fT (x)

∂ct
− (1 + ρext (x))

∂fT (x)

∂ct+1

)/
∂W (x)

∂ct+1

.

Proof. See Appendix A.5.
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Notice that ρext (x) in the lemma is nothing but the IE-consistent discount rate
when hazard rate is exogenous. Hence, we can say the endogeneity of extinction
risk increases the discount rate if Θt(x) > 0 and vice-versa. Since the first term
in Θt(x) is positive, the real question is whether the second term can be negative
or not. This may be rephrased as

Υt(x, T ) :=
∂fT (x)

∂ct
− (1 + ρext (x))

∂fT (x)

∂ct+1

R 0, (3.8)

for each T ≥ t+ 2.
Inequality (3.8) can be interpreted as follows. Now that the hazard rates

are endogenously determined by the past consumption history, both ct and ct+1

change the hazard rates h(MT ), and hence fT (x), for T ≥ t+2. The impacts of
ct and ct+1 on h(MT ) are different in general, and such difference determines the
sign of Υt(x, T ). If ct increases future hazard rates more than ct+1, which hap-
pens when today’s production technology is more pollution-intensive than the
one in the future, then Υt(x, T ) is likely to be positive, and thus ρent (x) > ρext (x).
This is consistent with the result of previous subsection. Increase of future haz-
ard rates (not transfer) usually raises the IE-consistent discount rate. Hence,
when today’s consumption increases future hazard rates more than tomorrow’s
consumption does, future consumption will be even more discounted than in the
case of exogenous hazard rate.

Does this mean endogeneity of extinction risk provides yet another justifica-
tion for higher discount rates? Our next proposition indicates that it is not always
the case. To see this, we restrict our attention to the case where the atmospheric
carbon concentration is stabilized over the planning horizon. Notice that along
a stabilized path with Mt = M for all t, the corresponding hazard rate is also
constant over time at the level of h(M).

Proposition 5. If
1

1 + ρdet (x)

σt
σt+1

< 1, (3.9)

then there exists h∗ > 0 such that for any stabilized path with h(M) < h∗,

ρent (x) < ρext (x).

Proof. See Appendix A.6.

This proposition says that the IE-consistent discount rate under endogenous
hazard rates can be lower than in the case of exogenous hazard rates. Note that
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the conditions in the proposition may be decomposed into three different factors:
time effect, technology effect, and risk effect. Time effect, which is captured by
the term 1/(1 + ρdet (x)), purely comes from the fact that today’s consumption is
preferred to tomorrow’s consumption even when there is no uncertainty. Recall
that ρdet (x) is the IE-consistent discount rate in the deterministic case. Inequal-
ity (3.9) indicates that when the discount rate for non-stochastic consumption
streams is high enough in the first place (i.e., time effect is large), consideration
of endogenous risk decreases the discount rate compared with the case of exoge-
nous hazard rates. This effect is governed by the specification of the individual
utility function v and the parameter K.

Technology effect, on the other hand, is represented by the term σt/σt+1.
Since σt is an index of pollution intensity, the ratio σt/σt+1 represents how fast
alternative clean technologies develop. If cleaner technologies become available
and consumption with fewer emission is possible at t+1, the emission intensity
of ct+1 decreases, which means σt+1 < σt. When σt/σt+1 is relatively large
(i.e., technology effect is large), the condition (3.9) is less likely to be satisfied.
If technological development is not so promising, however, the condition is more
likely to be satisfied, and thus the discount rate is more likely to be lower. This
effect is determined by social circumstances regarding environmental technolo-
gies.

The last factor, risk effect, is naturally represented by the stabilized hazard
rate h(M). According to the proposition above, when time effect is so large
or technology effect is so small that the condition (3.9) is satisfied, sufficiently
small hazard rate implies lower discount rate. If the stabilized hazard rate is rela-
tively large (i.e., risk effect is large), however, even when time effect is large and
technology effect is small, endogenous hazard rate can imply higher discount
rate. This effect is largely determined by the relationship between the level of
pollution and the risk of climatic catastrophe, relevance of which belongs to the
field of natural science.

The overall effect of endogenous risk depends on the assumptions about the
welfare function (ρde), the prospect of technological development (σ), and the
physical characteristic of the problem (h). Relative importance among these
factors can not be determined without conducting quantitative analysis. Hence,
if we are to derive more concrete implications for climate policy, it is necessary
to consult with some climate-economy modeling, which is to be explored in the
next section.
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4 Implications for Climate Policy

In this section, we further investigate the implications of intergenerationally eq-
uitable discounting for climate policy by conducting a numerical simulation.
Our model is a variant of DICE model with tiny risk of world extinction which
is endogenously determined.

4.1 The Model

First, technology is specified in the form of Cobb-Douglas production function

Yt =
ψt

1 + dt
Kε
tN

1−ε
t where dt = d̄(Zt − τ ∗)2 (4.1)

where Yt is output, Kt is capital, Nt is population, and Zt is temperature. Notice
we are assuming that increasing temperature has a negative impact on produc-
tion. Carbon emission Et is produced according to the equation

Et = σt(1 − µt)Yt, (4.2)

where µt is control rate or abatement rate of the emission. Emitted carbon diox-
ide is accumulated in the atmosphere through the equation

Mt+1 = (1 − ξ)Mt + κEt. (4.3)

We simplify the climate module used by Nordhaus (2008) and assume instead

Zt+1 = τ0 + τ1Zt + τ2 log(Mt)

+ τ3Ft + τ4 log(1 + τ5Ft) (4.4)

where Ft is aerosol emission, which is exogenously given. The dynamics of
capital accumulation is governed by

Kt+1 = (1 − υ)Kt + It (4.5)

where It is investment. The resource constraint is given as

Yt = Ct + It + At where Aj,t = αt(µt)
ζYt, (4.6)

where Ct is consumption and At represents abatement cost of carbon emission.
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Figure 4: Hazard Rate along BAU path

A key feature of our model is the specification of welfare function:

W (x) =
∞∑
T=1

T∑
t=1

v(ct)
t−1∏
τ=1

(1 −Kv(cτ ))h(MT )
T−1∏
s=1

(1 − h(Mt)) (4.7)

where

v(ct) = ω0 +
(ω1 + ct)

1−ω2

1 − ω2

with ct = Ct/Nt. (4.8)

The parameters ω0, ω1, and ω2 are introduced to control the value of ηt(x) and
make sure v(0) = 0. Following Fisher and Narain (2003), the hazard rate func-
tion is specified as

h(Mt) = h̄+ (1 − h̄)

[
2

1 + e−β(Mt−M1750)
− 1

]
, (4.9)

where h̄ is the extinction risk which does not depend on the climatic condition.
The relationship between the hazard rate and the concentration along the Busi-
ness as Usual (BAU) scenario of DICE model is illustrated in Figure 4.

The optimal carbon abatement path {µt}∞t=1 is defined as a part of the solu-
tion to the problem

max
Ct,µt,It

W (x) subject to (4.1) through (4.9),
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Figure 5: Optimal Carbon Abatement Paths (K = 0)

given K1, M1, and Z1. The model is calibrated based on Ikefuji et el. (2010),
and is solved with GAMS. The data and calibrated parameter values used in this
analysis are all listed in Table 1 of Appendix B.

4.2 Result

The result of our simple simulation is well summarized in Figure 5 above. In this
figure, the optimal abatement paths for each case of deterministic consumption,
exogenous hazard rate, and endogenous hazard rate are plotted. The exogenous
hazard rate was chosen such that the probability density in the initial period is
comparable to the case of endogenous one. The parameterK was chosen to be 0

here. As is illustrated in the Figure 6 and Figure 7 of Appendix C, small changes,
either positive or negative, of the value of K do not affect the qualitative nature
of the result.

First, in the case of no-risk of world extinction, the optimal abatement rate
is the same as the one in the benchmark case with δ = 0. This is just what
is expected from the theoretical analysis in the preceding section. When K =

0, the IE-consistent discount rate is exactly the same as the benchmark rate.
Manipulation of K alone does not change the result much. Once the exogenous
risk of world extinction is incorporated, however, the optimal carbon reduction
rate becomes a bit lower and gets closer to the case of δ = 0.03. Again, this
result is consistent with the analysis in the previous section. Uncertainty over
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extinction date always increases the discount rate.
What is more of interest is the optimal abatement path under endogenous

risk. The figure above reveals that endogeneity of hazard rate can work as a
downward driving force for the optimal carbon abatement rate. This is an indi-
cation that the IE-consistent discount rate is higher than the one in the case of
exogenous hazard rate. Hence, endogenous risk of climatic catastrophe makes
it even easier to justify higher rates of discounting. Having said that, there still
remains a huge gap between the normative approach with intergenerational eq-
uity and the descriptive approach with δ = 0.03. Therefore, the commonly used
discount rate of δ = 0.03 is not readily justifiable as long as impartial treatment
among generations is required. Although the proposition in section 3.3 cannot
directly be applied to this model, our simulation result implies that time effect is
small, technology effect is large, or risk effect is large in the context of climate
change.

These implications of course depend on several assumptions. The scale of
abatement rate is not completely independent of the choice of various parame-
ters. Our simulation result should at best be considered as a qualitative analysis
in its nature. Moreover, relatively large uncertainty exists in the specification of
some exogenous trend and functions. The endogenous hazard function h(M),
for instance, does not have rigorous scientific background. To discuss the appro-
priateness of this functional form is beyond the scope of a brief paper.

5 Conclusion

In this paper, I investigated the properties of intergenerationally equitable dis-
counting by using a welfare function which was originally developed by Epstein
(1983), and more recently extended by Bommier and Zuber (2008). In stead of
seeking for the appropriate value of social rate of time preference, intergenera-
tional equity was incorporated at axiomatic level. I showed that the IE-consistent
discount rate can be higher or lower than the standard no-time-preference case
without appealing to uncertainty. The relationship between IE-consistent dis-
count rates and risk of world extinction was also examined with an emphasis on
the case where the hazard rate is endogenously determined. With an applica-
tion to climate change, I showed that endogenous hazard rate can increase the
discount rate, which implies relatively less stringent carbon abatement as the
optimal climate policy.
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A Proofs of Propositions

A.1 Proof of Proposition 1

First, let Ũ : X∗ → R be a von Neuman-Morgenstern utility function with
which the expected utility form represents the ranking %. Define U : X∗ → R
by

U(x) := −Ũ(0) + Ũ(x) ∀x ∈ X∗,

so that U(0) = 0. Since Ũ is unique up to positive affine transformation, U is
another von Neuman-Morgenstern utility function for the same social ranking.

Next the independence axiom implies∫
X∗
U(c1, x)dp ≥

∫
X∗
U(c1, x)dq ⇔ (c1, p) % (c1, q)

⇔ (0, p) % (0, q)

⇔
∫
X∗
U(0, x)dp ≥

∫
X∗
U(0, x)dq,

for any p, q ∈ M(X∗) and c1 ∈ [0, c̄]n. This means there must be mappings
a : [0, c̄]n → R and b : [0, c̄]n → R++ such that

U(c1, x) = a(c1) + b(c1)U(0, x), (A.1)

for any x ∈ X∗ and c1 ∈ [0, c̄]n. On the other hand, the stationarity axiom
implies∫

X∗
U(0, x)dp ≥

∫
X∗
U(0, x)dq ⇔ (0, p) % (0, q)

⇔ (ĉ1, p) % (ĉ1, q)

⇔ p % q

⇔
∫
X∗
U(x)dp ≥

∫
X∗
U(x)dq,

for any p, q ∈ M(X∗), and hence there exist constant numbers â ∈ R and
b̂ ∈ R++ such that

U(0, x) = â+ b̂U(x), (A.2)

for any x ∈ X∗. Define mappings v : [0, c̄]n → R and B : [0, c̄]n → R++ as

v(c1) := a(c1) + âb(c1)

B(c1) := b̂b(c1).
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Then (A.1) and (A.2) mean

U(c1, x) = v(c1) +B(c1)U(x), (A.3)

for any x ∈ X∗ and c1 ∈ [0, c̄]n. Notice that v(0) = 0 and U(c1, 0) = v(c1)

because U(0) = 0. Recursive application of equation (A.3) yields

U(x) =
∞∑
t=1

v(ct)
t−1∏
τ=1

B(cτ ), (A.4)

for each x = (c1, c2, . . .) ∈ X∗ where
∏0

τ=1B(cτ ) := 1.
Take a pair of non-zero consumption bundles c, c′ ∈ [0, c̄]n\{0} and consider

the following three alternative outcomes z, z′, z′′ ∈ X∗:

z = (c, c′, 0, 0, . . .)

z′ = (c′, c, 0, 0, . . .)

z′′ = (0, c, c′, 0, . . .).

Then the axiom of intergenerational equity requires pz ∼ pz′ and pz ∼ pz′′ .
Observe first that since both c and c′ are non-zero vectors, the monotonicity
axiom implies v(c) > 0 and v(c′) > 0. Hence

pz ∼ pz′ ⇔
∫
X∗
U(x)dpz =

∫
X∗
U(x)dpz′

⇔ U(z) = U(z′)

⇔ v(c) +B(c)v(c′) = v(c′) +B(c′)v(c)

⇔ 1 −B(c)

v(c)
=

1 −B(c′)

v(c′)
.

This means there exists a constant K ∈ R such that K = (1 −B(c))/v(c) or

B(c) = 1 −Kv(c), (A.5)

for any c, c′ ∈ [0, c̄]n \ {0}. Notice here that since B(c) > 0 and v(c̄) ≥ v(c) for
any c ∈ [0, c̄],

K =
1 −B(c)

v(c)
<

1

v(c)
≤ 1

v(c̄)
,

meaning 1/v(c̄) is the upper bound of K.
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On the other hand, noting v(0) = 0 and U(z) > 0,

pz ∼ pz′′ ⇔
∫
X∗
U(x)dpz =

∫
X∗
U(x)dpz′′

⇔ U(z) = U(z′′) = v(0) +B(0)U(z)

⇔ B(0) = 1,

and thus
B(0) = 1 −Kv(0). (A.6)

Finally, apply (A.5) and (A.6) to (A.4) and obtain

U(x) =
∞∑
t=1

v(ct)
t−1∏
τ=1

(1 −Kv(cτ )),

for each x = (c1, c2, . . .) ∈ X∗.

A.2 Proof of Proposition 2

Let B(c) := 1 −Kv(c) and note that

∂U(x)

∂ct
= v′(ct)

t−1∏
τ=1

B(cτ ) +
B′(ct)

B(ct)

∞∑
k=t

v(ck+1)
k∏
τ=1

B(cτ )

=
v′(ct)

B(ct)

{
t∏

τ=1

B(cτ ) −K
∞∑
k=t

v(ck+1)
k∏
τ=1

B(cτ )

}

=
v′(ct)

B(ct)

(1 −Kv(ct+1))︸ ︷︷ ︸
= B(ct+1)

t∏
τ=1

B(cτ ) −K
∞∑

k=t+1

v(ck+1)
k∏
τ=1

B(cτ )


=
v′(ct)

B(ct)

{
t+1∏
τ=1

B(cτ ) −K
∞∑

k=t+1

v(ck+1)
k∏
τ=1

B(cτ )

}

=
v′(ct)

v′(ct+1)

B(ct+1)

B(ct)

v′(ct+1)

B(ct+1)

{
t+1∏
τ=1

B(cτ ) −K

∞∑
k=t+1

v(ck+1)
k∏
τ=1

B(cτ )

}
︸ ︷︷ ︸

=
∂U(x)

∂ct+1

=
v′(ct)

v′(ct+1)

B(ct+1)

B(ct)

∂U(x)

∂ct+1

.
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Hence

ρdet (x) =
∂U(x)

∂ct

/
∂U(x)

∂ct+1

− 1

=
v′(ct)

v′(ct+1)

B(ct+1)

B(ct)
− 1

=
v′(ct)

v′(ct+1)

1 −Kv(ct+1)

1 −Kv(ct)
− 1.

A.3 Proof of Proposition 3

Notice first

∂UT (x)

∂ct
=



0 for T ≤ t− 1

v′(ct)

B(ct)

t∏
τ=1

B(cτ ) for T = t

v′(ct)

v′(ct+1)

B(ct+1)

B(ct)

∂UT (x)

∂ct+1

for T ≥ t+ 1.

(A.7)

Hence

∂W (x)

∂ct
=

∞∑
T=t

fT
∂UT (x)

∂ct

= ft
∂Ut(x)

∂ct
+

∞∑
T=t+1

fT
∂UT (x)

∂ct

=
v′(ct)

B(ct)
ft

t∏
τ=1

B(cτ ) +
v′(ct)

v′(ct+1)

B(ct+1)

B(ct)

∞∑
T=t+1

fT
∂UT (x)

∂ct+1

=
v′(ct)

v′(ct+1)

B(ct+1)

B(ct)

(
1 + Φ−1

t (x;K)
) ∞∑
T=t+1

fT
∂UT (x)

∂ct+1︸ ︷︷ ︸
=
∂W (x)

∂ct+1

,

where

Φt(x;K) :=
∞∑

T=t+1

fT
∂UT (x)

∂ct+1

/
v′(ct+1)

B(ct+1)
ft

t∏
τ=1

B(cτ ). (A.8)
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Therefore

ρext (x) =
∂W (x)

∂ct

/
∂W (x)

∂ct+1

− 1

=
v′(ct)

v′(ct+1)

1 −Kv(ct+1)

1 −Kv(ct)

(
1 + Φ−1

t (x;K)
)
− 1.

For more precise form of Φt(x), apply (A.7) recursively and obtain

∂UT (x)

∂ct
=

v′(ct)

v′(ct+1)

B(ct+1)

B(ct)

∂UT (x)

∂ct+1

=
v′(ct)

B(ct)

T∏
τ=1

B(cτ )

for T ≥ t+ 1. This, together with (A.7) for T = t, means

∂UT (x)

∂ct
=
v′(ct)

B(ct)

T∏
τ=1

B(cτ ) ∀T ≥ t

Plugging this into (A.8) yields

Φt(x;K) =
∞∑

T=t+1

fT
v′(ct+1)

B(ct+1)

T∏
τ=1

B(cτ )

/
v′(ct+1)

B(ct+1)
ft

t∏
τ=1

B(cτ )

=
∞∑

T=t+1

fT
ft

T∏
τ=t+1

B(cτ )

=
∞∑

T=t+1

hT
∏T−1

s=1 (1 − hs)

ht
∏t−1

s=1(1 − hs)

T∏
τ=t+1

B(cτ )

=
∞∑

T=t+1

hT
ht

(
1 − ht
1 − hT

) T∏
s=t+1

(1 − hs)
T∏

τ=t+1

B(cτ )

=
∞∑

T=t+1

hT
ht

(
1 − ht
1 − hT

) T∏
τ=t+1

{[1 −Kv(cτ )] (1 − hτ )} ,

which is decreasing in K. This means that higher value of K increase the term
(1 + Φ−1

t (x;K)).
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A.4 Proof of Proposition 4

Note

Φ̃t(x;K) =
∞∑

T=t+1

h̃T

h̃t

(
1 − h̃t

1 − h̃T

)
T∏

τ=t+1

{
B(cτ )(1 − h̃τ )

}
=
h̃t+1

h̃t
(1 − h̃t)B(cτ )

+
ht

h̃t

1 − h̃t
1 − ht

1 − h̃t+1

1 − ht+1︸ ︷︷ ︸
=: φ(h)

∞∑
T=t+2

hT
ht

(
1 − ht
1 − hT

) T∏
τ=t+1

{B(cτ )(1 − hτ )}

=
h̃t+1

h̃t
(1 − h̃t)B(cτ ) − φ(h)

ht+1

ht
(1 − ht)B(cτ )

+ φ(h)
∞∑

T=t+1

hT
ht

(
1 − ht
1 − hT

) T∏
τ=t+1

{B(cτ )(1 − hτ )}︸ ︷︷ ︸
= Φt(x;K)

= φ(h)Φt(x;K) +

(
1 − ht+1

h̃t+1

1 − h̃t+1

1 − ht+1

)
h̃t+1

h̃t
B(ct+1)(1 − h̃t)

Since h̃t+1 = ht+1 + γ > ht+1, the second term is positive for any γ > 0. As for
the first term, observe

φ(h) − 1 =
ht

h̃t

1 − h̃t
1 − ht

1 − h̃t+1

1 − ht+1

− 1

=
ht(1 − h̃t)(1 − h̃t+1) − h̃t(1 − ht)(1 − ht+1)

h̃t(1 − ht)(1 − ht+1)

=

htγ

(
(1 − ht+1)

{
1

ht
− (1 − ht)

}
− γ

)
h̃t(1 − ht)(1 − ht+1)

,

which is positive if

γ < (1 − ht+1)

{
1

ht
− (1 − ht)

}
. (A.9)
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Hence there is positive value of γ such that φ(h) > 1. For such γ,

Φ̃t(x;K) = φ(h)Φt(x;K) +

(
1 − ht+1

h̃t+1

1 − h̃t+1

1 − ht+1

)
h̃t+1

h̃t
B(ct+1)(1 − h̃t)

> Φt(x;K),

and thus

ρ̃ext (x) =
v′(ct)

v′(ct+1)

1 −Kv(ct+1)

1 −Kv(ct)

(
1 + Φ̃−1

t (x;K)
)
− 1

<
v′(ct)

v′(ct+1)

1 −Kv(ct+1)

1 −Kv(ct)

(
1 + Φ−1

t (x;K)
)
− 1

= ρext (x),

as desired. Moreover, since h̃t = ht − γ > 0, condition (A.9) is always satisfied
as long as

ht ≤ (1 − ht+1)

{
1

ht
− (1 − ht)

}
⇔ 1 − ht+1

ht+1

1 − ht
ht

≥ ht.

A.5 Proof of Lemma 1

Since ∂fT (x)/∂ct = 0 for all T ≤ t,

∂W (x)

∂ct
=

∞∑
T=1

(
∂UT (x)

∂ct
fT (x) + UT

∂fT (x)

∂ct

)
=

∞∑
T=t

∂UT (x)

∂ct
fT (x) +

∞∑
T=t+1

UT
∂fT (x)

∂ct
. (A.10)

Thus it is immediate from the proof of proposition 3 that
∞∑
T=t

∂UT (x)

∂ct
fT (x) = (1 + ρext (x))

∞∑
T=t+1

∂UT (x)

∂ct+1

fT (x)

= (1 + ρext (x))

(
∞∑

T=t+1

∂UT (x)

∂ct+1

fT (x) +
∞∑

T=t+2

UT
∂fT (x)

∂ct+1

)

− (1 + ρext (x))
∞∑

T=t+2

UT
∂fT (x)

∂ct+1

= (1 + ρext (x))
∂W (x)

∂ct+1

− (1 + ρext (x))
∞∑

T=t+2

UT
∂fT (x)

∂ct+1
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Putting this back into (A.10) yields

∂W (x)

∂ct
= (1 + ρext (x))

∂W (x)

∂ct+1

+
∞∑

T=t+1

UT
∂fT (x)

∂ct
− (1 + ρext (x))

∞∑
T=t+2

UT
∂fT (x)

∂ct+1

.

Therefore

ρent (x) =
∂W (x)

∂ct

/
∂W (x)

∂ct+1

− 1

= ρext (x) + Θt(x),

where

Θt(x) =

(
∞∑

T=t+1

UT (x)
∂fT (x)

∂ct
− (1 + ρext (x))

∞∑
T=t+2

UT (x)
∂fT (x)

∂ct+1

)
∂W (x)

∂ct+1

= Ut+1(x)
∂ft+1(x)

∂ct

/
∂W (x)

∂ct+1

+
∞∑

T=t+2

UT (x)

(
∂fT (x)

∂ct
− (1 + ρext (x))

∂fT (x)

∂ct+1

)/
∂W (x)

∂ct+1

.

A.6 Proof of Proposition 5

First notice

MT = (1 − ξ)MT−1 + κσT−1cT−1

= (1 − ξ)T−1M1 +
T−1∑
k=1

(1 − ξ)T−1−kκσkck

and hence

∂hT (x)

∂ct
= h′(MT )

∂MT

∂ct

= h′(MT )κσt(1 − ξ)T−t−1.
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Thus

∂fT (x)

∂ct
=

T−1∏
s=1

(1 − hs(x))

(
∂hT (x)

∂ct
−

T−1∑
l=t+1

∂hl(x)

∂ct

hT (x)

(1 − hl(x))

)

= κσtfT (x)

(
h′(MT )(1 − ξ)T−t−1

hT (x)
−

T−1∑
l=t+1

h′(Ml)(1 − ξ)l−t−1

(1 − hl(x))

)

For a spabilized path with Mt = M for all t, let h := h(M) and h′ := h′(M).
Then

∂fT (x)

∂ct
= h′κσt(1 − h)T−1

(
(1 − ξ)T−t−1 − h

(1 − h)

T−1∑
l=t+1

(1 − ξ)l−t−1

)

=
h′κσt(1 − h)T−1

ξ

{(
ξ +

h

1 − h

)
(1 − ξ)T−t−1 − h

1 − h

}
.

Hence

lim
h→0

∂fT (x)

∂ct
= h′κσt(1 − ξ)T−t−1. (A.11)

Similarly,

∂fT (x)

∂ct+1

=
h′κσt+1(1 − h)T−1

ξ

{(
ξ +

h

1 − h

)
(1 − ξ)T−t−2 − h

1 − h

}
.

and thus

lim
h→0

∂fT (x)

∂ct+1

= h′κσt+1(1 − ξ)T−t−2. (A.12)

Notice that since Φ−1
t (x;K) ≥ 0 for any h,

lim
h→0

ρext (x) =
v′(ct)

v′(ct+1)

1 −Kv(ct+1)

1 −Kv(ct)

(
1 + lim

h→0
Φ−1
t (x;K)

)
− 1

≥ v′(ct)

v′(ct+1)

1 −Kv(ct+1)

1 −Kv(ct)
− 1

= ρdet (x), (A.13)

which is positive because ρdet (x) > σt/σt+1 − 1 and σt ≥ σt+1. Also notice

Ut+1 =
t+1∑
k=1

v(ck)
k−1∏
τ=1

(1 −Kv(cτ ))

≤
T∑
k=1

v(ck)
k−1∏
τ=1

(1 −Kv(cτ )) = UT (A.14)
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for T ≥ t+ 2. Therefore, if

1 − σt+1

σt
(1 + ρdet (x)) < 0,

then (A.11), (A.12), (A.13) and (A.14) imply

lim
h→0

Θt(x)
∂W (x)

∂ct+1

= Ut+1 lim
h→0

∂ft+1(x)

∂ct

+
∞∑

T=t+2

UT

(
lim
h→0

∂fT (x)

∂ct
− (1 + lim

h→0
ρext (x)) lim

h→0

∂fT (x)

∂ct+1

)
= h′κσtUt+1

+ h′κσt

[
1 − 1

1 − ξ

σt+1

σt
(1 + lim

h→0
ρext (x))

] ∞∑
T=t+2

(1 − ξ)T−t−1UT

≤ h′κσtUt+1

+ h′κσt

[
1 − 1

1 − ξ

σt+1

σt
(1 + ρdet (x))

]
︸ ︷︷ ︸

<0

∞∑
T=t+2

(1 − ξ)T−t−1UT

≤ h′κσtUt+1

+ h′κσt

[
1 − 1

1 − ξ

σt+1

σt
(1 + ρdet (x))

] ∞∑
T=t+2

(1 − ξ)T−t−1Ut+1

=
h′κσtUt+1

ξ

(
1 − σt+1

σt
(1 + ρdet (x))

)
< 0,

which means there exists h∗ > 0 such that Θt(x) < 0 for all h < h∗.
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B Assumptions for Numerical Simulation

B.1 Exogenous Trends

The exogenous trends for population, total factor productivity, carbon intensity
are specified as follows:

Nt+1 = (1 + gnt )Nt with gnt+1 = (1 − δn)gnt ,

ψt+1 = (1 + gψt )ψt, with gψt+1 = (1 − δψ)gψt ,

σt+1 = (1 − gσt )σt with gσt+1 = (1 − δσ)gσt .

The population trend is based on the projection provided by the United Nations
Population Division1. I directly input the projected population for the first three
periods and then chose gn2025 and δn such that the model matches the future pre-
diction thereafter. The parameters governing productivity and carbon intensity
are the same as Nordhaus (2008).

The marginal abatement cost is assumed to decline overtime. On this point,
I follow Nordhaus (2008) and specify αt as

αt =
σt
ζ
m
[
ν + (1 − gm)t(1 − ν)

]
,

where ν ∈ (0, 1).

B.2 Data & Parameter Values

The emission data of carbon dioxide was taken from International Energy An-
nual of US Energy Information Administration2. Following Ikefuji et al. (2010),
I used sulfur emission as a representative index of aerosols in the atmosphere.
The sulfur emission data is based on the work of Stern (2005)3. The GDP data of
World Economic Outlook Databases of International Monetary Fund4 was used
for the initial output. The data of carbon concentration comes from SCRIPPS
CO2 of Mauna Loa Observatory5. All of the parameter values used in this anal-
ysis is listed in Table 1 below.

1http://esa.un.org/unpd/wpp2008/index.htm
2http://www.eia.doe.gov/environment.html
3http://www.sterndavidi.com/datasite.html
4http://www.imf.org/external/index.htm
5 http://scrippsco2.ucsd.edu/data/atmospheric_co2.html
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Symbol Value Description Unit

M1750 596 Carbon concentration (1750) GtC
M2005 809 Carbon concentration (2005) GtC
Z2005 14.482 Mean temperature (2005) oC
K2005 91 Capital stock (2005) trill US$
N2025 6468 Population (2025) million
ψ2005 3.189 Total factor productivity (2005) —
σ2005 0.187 Emission-output ratio (2005) —
m 0.9 Parameter in cost function —
gn2025 0.0798 Population growth rate —
gψ2005 0.092 Growth rate of TFP (2005) —
gσ2005 −0.0724 De-carbonization rate (2005) —
gm 0.05 Convergence rate of carbon abatement cost —
δn 0.656 Convergence rate of population growth —
δψ 0.001 Convergence rate of TFP —
δσ −0.0296 Convergence rate of de-carbonization (2005) —
ν 0.5 Ratio of initial to final abatement cost —
ε 0.3 Capital’s share of income —
υ 0.1 Capital depreciation rate per decade —
d̄ 0.00284 Damage coefficient —
τ ∗ 13.71 Desirable mean temperature oC
ξ 0.0524 Carbon depreciation rate per decade —
κ 0.47 Carbon retention rate per decade —
τ0 −4.561 Parameter in temperature equation —
τ1 0.786 Parameter in temperature equation —
τ2 1.206 Parameter in temperature equation —
τ3 −0.001 Parameter in temperature equation —
τ4 −0.201 Parameter in temperature equation —
τ5 0.024 Parameter in temperature equation —
α 0.651 Parameter in cost function —
ζ 2.8 Parameter in cost function —
ω0 12.559 Parameter in utility function —
ω1 0.01 Parameter in utility function —
ω2 1.2 Parameter in utility function —
h̄ 5 × 10−6 Parameter in hazard rate function —
β 2.75 × 10−11 Parameter in hazard rate function —

Table 1: Data & Parameter Values
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C Results for Different K
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Figure 6: Optimal Carbon Abatement Paths (K = 1 × 10−6)
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Figure 7: Optimal Carbon Abatement Paths (K = −1 × 10−6)
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