
The Role of Monetary Policy Uncertainty in the Term

Structure of Interest Rates

Junko Koeda∗ Ryo Kato†‡

July 2010

Abstract

We examine the effect of uncertainty arising from policy-shock volatility on yield-

curve dynamics. Contrary to the assumption of many macro-finance models, policy-

shock processes appear to be time varying and persistent. We allow for this key

feature by constructing a no-arbitrage GARCH affine term structure model, in which

policy shock volatility is modeled as the conditional volatility of the error term

in a Taylor rule. We find that an increase in monetary policy uncertainty raises

the medium- and longer-term spreads in a model that incorporates macroeconomic

dynamics.
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1 Introduction

The time-varying volatility of factors that explain yield-curve dynamics may have impor-

tant macroeconomic implications. For example, if the short-term interest rate follows a

monetary policy rule such as a Taylor rule, then its conditional volatility captures mon-

etary policy uncertainty that can affect the amount of interest rate risk perceived by

market participants. In line with this widely acknowledged idea, some authors (Rude-

busch 2002, Rudebusch, Swanson, and Wu, 2006) have suggested investigating the role

of uncertainty factors in explaining yield curve dynamics. However, little formal analysis

has followed, and most macro-finance no-arbitrage affine term structure models (ATSMs)

remain to be homoskedastic.1 In order to fill this gap, this paper examines the role of

uncertainty arising from the heteroskedastic policy shock process in accounting for yield

curve dynamics.

In general, policy uncertainty may at times be large and long-lived, while at other

times relatively small and short-lived. At a time of unusual distress–for example the

Volcker shock in the early 1980s, the Black Monday in 1987, 9/11 in 2001, and the

Lehman shock in 2008–the Fed undertook extraordinary action deviating from any

known simple policy rule. As a result, uncertainty in the federal funds (FF) and other

financial markets has increased. On the other hand, there are indications that FF market

volatility has declined since the Federal Open Market Committee (FOMC) began pub-

licly announcing the target FF rate in 1995 (Favero and Mosca, 2001). In a somewhat

similar vein, in 2004, the FOMC explicitly signaled that its future course of monetary

policy would be less volatile and more predictable for market participants.2

On these grounds, it may be more reasonable to assume that the policy shock process

consists of large occasional shocks. Once it largely deviates from the policy rule, the

increased uncertainty in financial markets cannot easily be eliminated. One way to

accommodate this type of shock process is to apply a generalized autoregressive condi-

tional heteroskedasticity (GARCH) process that allows for serial correlation in the con-

1A body of empirical evidence, however, indicates that homoskedasticity is disputable (e.g., Brenner,

Harjes, and Kroner 1996).
2For example, the FOMC made explicit policy commitments with statements such as, “Policy accom-

modation can be maintained for a considerable period” (August 2003) and “Accommodative monetary

policy stance will be removed at a measured pace” (June 2004).

2



ditional volatility.3 4 To this end we construct a discrete-time macro-finance GARCH

term structure model. Specifically, we extend Heston and Nandi’s (2003) multivariate

GARCH “ATSM”5 with a richer macro structure. The main difference between Heston

and Nandi’s (2003) model and other GARCH term-structure models is that the yield

equation in their model can be written as an affine function of state variables. This

allows for greater tractability and generates a closed-form solution for term rates with

any maturity as well as option pricing.

With the existing macro-finance ATSMs having performed broadly successfully,6 we

take Ang and Piazzesi (2003) as a point of departure and generalize their model in

three directions. First, we allow the short-term interest rate to follow a GARCH-type

process with the conditional volatility of the error term following an autoregressive

moving average process. Second, we allow the dynamics of macro variables7 to depend

on the lagged short term interest rate as well as their own lagged variables, in a spirit

similar to Ang, Piazzesi, and Wei (2006) and Hördahl, Tristani, and Vestin (2006).

Thus, the policy interest rate can directly influence future macro variables, and vice

versa. Third, to enhance the link between financial econometrics and macroeconomics,

we include no latent variables, which are commonly used in many term structure models

3Previously developed “pure finance” ATSMs (e.g., Dai and Singleton 2000) are compatible with

stochastic volatility, and they typically assume a square-root process for factor heterosckedasticity–for

example, in a single-factor ATSM, where the short rate is the only factor explaining yield curves, the

factor variance is the level of short rate itself. However, the square-root models tend to overstate the

sensitivity of volatility to levels (Brenner et al., 1996), and to date no consensus has been reached on

how one should model the short-rate volatility.
4Evidence of time-varying conditional volatility can be provided by single-equation GARCH estima-

tion. A regression of the FF rate on a constant, its first lag, 12-month inflation, 12-month change in

unemployment (in percent), where the conditional variance of the FF rate follows the autoregressive

moving average process, generates statistically significant GARCH and ARCH terms.
5"ATSM" in the sense that model-implied yields can be expressed as an affine function of state

variables. Because the continuous version of the GARCH equation reduces to an ordinary differential

equation rather than an affine diffusion process, our model lies outside the continuous ATSM framework

formally defined by Dai and Singleton (2000).
6For example, Ang and Piazzesi (2003), using a discrete-time version of the affine class introduced by

Duffie and Kan (1996), found that macro factors explain up to 85 perceent of movements in the short

and middle parts of yield curves, and around 40 percent at the long end.
7 In the baseline model, we assume homoskedasity for the dynamics of inflation and real activity. We

can extend our model to allow heteroskedasticity for the macro dynamics, though such heteroskedasticity

is less evidently confirmed when the sample period is short.
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to improve empirical performance, because they alone cannot outfit any macroeconomic

interpretations. We show that the inclusion of economically interpretable conditional

volatility can significantly improve the empirical fit of the ATSMs, effectively replacing

uninterpretable latent factors.

The model-implied conditional volatility is significantly time varying and persistent–

it soared in the early 1980s and tapered off during the period of the “Great Moderation.”

The gradual decline halted in the early 2000s, when the Fed undertook expansionary

policy deviating from the Taylor rule (Taylor 2009), but resumed its decline after the

FOMC began making explicit policy announcements. Then it increased again during

the global financial crisis of late 2000s.

Our model-estimated results indicate that the conditional volatility of the short term

interest rate–monetary policy uncertainty–plays a significant role in determining the

shape of yield curves in the presence of the Taylor rule and endogenous macro dynamics.

An increase in the uncertainty factor in the short-rate dynamics raises term spreads by

lifting the middle and longer-end parts of the yield curves. In addition, we focus on a

new aspect of policy shock process–policy shock volatility–in explaining yield curves,

whereas the existing literature focuses on the policy shock itself, assuming that policy

shocks are i.i.d. normal, presumably for tractability. For example, Evans and Marshall

(2001), using VARs with yields of various maturities and macro variables, find that

positive monetary policy shocks would bear-flatten a yield curve.

To exemplify how our model performs on real data, we set forth a case study, high-

lighting the so-called Greenspan conundrum period of 2004-06, on the grounds that mon-

etary policy uncertainty declined during this period (for example, see Figure 1). Our

model with the estimated parameters successfully generate the continued bear-flattening

of yield curves.8 It also suggests that the greater predictability in monetary policy in

this period reined in the risk premium. Meanwhile, it offsets the upward pressures from

the rising short term interest rate and the expanding economic activity.

The paper is organized as follows. The next section describes our macro-finance

GARCH term-structure model. Section 3 sets out our estimation strategy, and Section

4 discusses estimated results and a case study on the conundrum period of 2004-06

8 In the run-up to the 2008 global financial crisis, US yield curves continued to bearflatten, despite

the consecutive hikes in the FF rate and the expanding economic activity.
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during which monetary policy uncertainty declined. Section 5 concludes.

 

Figure 1. Monetary policy uncertainty (in basis points). Following the methodology of Kuttner (2001), this 

figure reports recent developments in monetary policy uncertainty; unanticipated policy changes are estimated 

by differences between the spot-month futures rates before and after each FOMC meeting; 

anticipated changes are the actual minus the estimated unanticipated changes). During the tightening period of  

2004—2007, as can be seen from the figure, the interest rate hikes were mostly well anticipated by investors. 
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2 The Model

The basic setup of our model essentially builds on the prevailing discrete macro-finance

no-arbitrage term structure model, where the stochastic process of the short-term inter-

est rate is driven by a Taylor-type (1993) monetary policy rule. With no-arbitrage bond

pricing restrictions, term rates for any maturity can be expressed as an affine function

of factors such as the short term interest rate and macro variables.

2.1 Short-term interest rate and macro-variable dynamics

We employ a few variants of the standard Taylor rule that includes the lagged short-term

interest rate and expected inflation rate (rather than the concurrent inflation rate). This

specification including the expected inflation may be labeled a forward-looking version

of the Taylor rule as proposed by Clarida et al. (2000). The baseline dynamics of
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short-term and macro variables are given by

rt+1 = μ0
1×1

+ μ1
1×1
rt + μ2

1×2
Xt+1 +

p
ht+1zt+1 (1)

Xt+1 = δ0
2×1

+ δ1
2×1
rt + Φ

2×2
Xt + Σ

2×2
εt+1 (2)

ht+1 = β0
1×1

+ β1
1×1
ht + α

1×1
z2t (3)

Xt = [πt yt]
0, (4)

where rt denotes the short-term interest rate (FF rate). Xt is a 2 × 1 macro-variable

vector of inflation (π), and real activity (y) measures following an autoregressive (AR)

process. Σ is an upper triangular matrix, while ht is the conditional variance of the

short-term interest rate. A scalar random shock z and a 2 × 1 random shock vector ε

are assumed to be independent and jointly normal.

We take Ang and Piazzesi (2003) as a point of departure and generalize their model

in two directions. First, we allow the short-term interest rate to follow a GARCH-type

process with the conditional volatility of the error term following an autoregressive mov-

ing average process given by equation (3). Note that ht+1 is included in the information

set in period t by (3). The
p
ht+1zt+1 term in the short-rate equation (1) could be inter-

preted as discretionary changes in the FF rate deviated from the Taylor rule. In some

preceding macro-finance models as well as in broader monetary policy-related works,

the “policy shock” is broadly assumed to be a random shock following i.i.d. normal dis-

tribution on account of tractability rather than empirical plausibility. As discussed in

the previous section, empirical evidence supports that the policy shock has time-varying

(conditional) variance as opposed to the homoskedasticity frequently assumed in most

of the early macro-finance studies.

Second, we allow the dynamics of macro variables to depend on the lagged short term

interest rate as well as their own lagged variables, in a spirit similar to Ang, Piazzesi,

and Wei (2006) and Hördahl, Tristani, and Vestin (2006). Thus, the policy interest

rate can directly influence future macro variables. In the next model-estimation section,

we will explain that the inclusion of the lagged short term interest rate requires us to

modify the Ang and Piazzesi-type specification of the system of equations.

Third, our model has no latent variables, which are commonly used in term structure

models to explain the yield curve dynamics, because they alone cannot provide any
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macroeconomic interpretations. Instead, we treat the conditional volatility of the short

term interest rate as an additional factor that explains the yield curves. We then jointly

estimate this unobservable variable via maximum likelihood estimation.

Substituting (2) into (1), we obtain

rt+1 = μ0 + μ1rt + μ2Xt+1 +
p
ht+1zt+1

= μ0 + μ1rt + μ2 (δ0 + δ1rt +ΦXt +Σεt+1) +
p
ht+1zt+1

= (μ0 + μ2δ0)| {z }
μ0

+ (μ1 + μ2δ1)| {z }
μ1

rt + (μ2Φ)| {z }
μ2

Xt +
p
ht+1zt+1 + μ2Σεt+1 (5)

where μ̄0 = μ0 + μ2δ0, μ̄1 = μ1 + μ2δ1, μ̄2 = μ2Φ. (6)

The above short-term interest rate and macro-variable dynamics can be rewritten in a

more concise form:⎛⎝ rt+1

Xt+1

⎞⎠ =

⎛⎝ μ0

δ0

⎞⎠+
⎛⎝ μ1

δ1

⎞⎠ rt +
⎛⎝ μ2

Φ

⎞⎠Xt +
⎛⎝ p

ht+1 μ2Σ

0 Σ

⎞⎠
| {z }

≡Σt+1

⎛⎝ zt+1

εt+1

⎞⎠
| {z }
≡et+1

,

ht+1 = β0 + β1ht + αz2t .

2.2 Pricing kernel and the price of risk

We define a time-dependent 1 × 3 price of risk vector Ωt and assume that the price of
risk takes a certain affine form in state variables, as handled in many existing affine term

structure models.

Ω
0
t ≡ (ωr,t ωπ,t ωy,t)⎡⎢⎢⎢⎣

ω0r

ω0π

ω0y

⎤⎥⎥⎥⎦
| {z }

Ω0

+

⎡⎢⎢⎢⎣
0 0 0

ω21 ω22 ω23

ω31 ω32 ω33

⎤⎥⎥⎥⎦
| {z }

Ω1

⎡⎢⎢⎢⎣
rt

πt

yt

⎤⎥⎥⎥⎦ . (7)

ω0 ≡ [ω0π ω0y]
0 ω1 ≡ [ω21 ω31]0 Ω̃1 ≡

⎡⎣ ω22 ω23

ω32 ω33

⎤⎦ ,
where Ω0 is a 3× 1 constant vector, and Ω1 is a 3× 3 constant matrix where we impose
some zero restrictions.9 Note that with the zero restriction, ωr,t = ω0r.

9The first row in Ωjs must be zero, as this is a critical condition to ensure that the model lies within

the affine framework (in the sense that yield equations can be written as a linear function of factors).
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Now suppose that the pricing kernel (m)10 is given by

mt+1 ≡ exp(−rt +ΩtΣt+1et+1 − 1
2
ΩtΣt+1Σ

0
t+1Ω

0
t).

Then the log price of n-period bond follows the following affine form (see Appendix B

for the derivation):

pnt = exp(Ān + B̄nrt + C̄nht+1 + D̄nXt),

where Ān+1 = Ān + B̄nμ0 + C̄nβ0 + D̄nδ0 +
1

2
HnΣΣ

0H
0
n (8)

−1
2
log(1− 2C̄nα) + ω0rμ2ΣΣ

0H 0
n +HnΣΣ

0ω0

B̄n+1 = B̄nμ1 + D̄nδ1 +HnΣΣ
0ω1 − 1 (9)

C̄n+1 = C̄nβ1 + B̄nω0r +
1

2
B̄2n (10)

D̄n+1 = D̄nΦ+B̄nμ2 +HnΣΣ
0Ω̃1 (11)

μ1 = μ1 + μ2δ1 , μ2 = μ2Φ, Hn = B̄nμ2 +Dn.

Note that according to basic asset pricing theory, the n-period bond yield is given by

rnt = An +Bnrt + Cnht+1 +DnXt,

where An = −Ān/n, Bn = −B̄n/n, Cn = −C̄n/n, Dn = −D̄n/n.

3 Model Estimation

For our estimation, we use monthly data on interest rates and macro variables that

capture inflation and real activity from July 1954 to December 2009.11 We assume that

the policy reaction function remains fully stable throughout the period.12 The summary

statistics and data sources are provided in Appendix C.

10For the pricing kernel expressed in terms of risk-neutral probabilities, see Appendix A.
11Our sample period starts from July 1954 because the FF rate data are available from that month.
12Thus we subscribe the view expressed by Sims and Zha (2006) that the monetary policy rule was

stable.
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Figure 2. Bond yields and macro principal components. The top panel plots the monthly 
FF rate and zero-coupon bond yields of  maturity 3 months, 12 months, 36 months, and 60 
months at an annualized rate in percent. The bottom panel plots employment and CPI in 
year-on-year percentage change, representing real activity and inflation, respectively. The sample 
period is July 1954 to December 2009. 
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We use the FF rates for the short term interest rate and zero-coupon bond yields of

3-, 12-, 36-, and 60-month maturities (Figure 2, top panel); the FF rates are obtained

from the Fed. The bond yields are from the CRSP US Treasury Database (the Fama-

Bliss Discount Bond Files for 12-, 36-, and 60-month data and from the Risk-Free Rate

Files for 3-month data). All bond yields are continuously compounded and expressed at

annualized rates in percentages. Regarding inflation and real activity measures, we use

the consumer price index (CPI) and employment data (Figure 2, bottom panel). These

macro variables are expressed in the year-on-year difference in logs of the original series
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(see appendix C for data description).

As explained in the previous section, our model dynamics consist of macro dynamics

and static yield equations. The macro dynamics are summarized by equation (2) and

the static yield equations are given by

Rt = A+Brt + Cht+1 +DXt +Σ
mεmt+1,

where Rt =
£
r3t , r

12
t , r

36
t , r

60
t

¤0
is a 4 × 1 vector of bond yields with maturities correspond-

ing to the superscript numbers (in months). The yield dynamics are an affine function

of the state variables with the coefficient vectors of A,B,C, and D corresponding to (i)

the constant term, (ii) the short-rate term, (iii) the conditional variance term, and (iv)

the macro-variable term, respectively. These vectors are time-invariant 4 × 1 vectors

with maturities corresponding to the subscript numbers (i.e., A = [A3, A12, A36, A60]
0

B = [B3, B12, B36, B60]
0 C = [C3, C12, C36, C60]

0
D = [D3,D12,D36,D60]

0). Their el-

ements are derived from the recursive equations; in other words, the model implicitly

imposes cross-equation restrictions reducing the number of parameters to be estimated.

Measurement errors εm are assumed to have constant variance and Σm is a diagonal

matrix.

We can summarize the system of equations to be estimated as follows:

⎛⎜⎜⎜⎝
rt+1

Xt+1

Rt

⎞⎟⎟⎟⎠
| {z }

≡Yt+1

=

⎛⎜⎜⎜⎝
μ0

δ0

A

⎞⎟⎟⎟⎠+
⎛⎜⎜⎜⎝

μ1

δ1

B

⎞⎟⎟⎟⎠ rt +
⎛⎜⎜⎜⎝
0

0

C

⎞⎟⎟⎟⎠ht+1 (12)

+

⎛⎜⎜⎜⎝
μ2

Φ

D

⎞⎟⎟⎟⎠Xt +
⎛⎜⎜⎜⎝
p
ht+1 μ2Σ 0

0 Σ 0

0 0 Σm

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
zt+1

εt+1

εmt+1

⎞⎟⎟⎟⎠ ,
ht+1 = λ+ β1(ht − λ) + α(z2t − 1), (13)

where zt, εt, and εmt are jointly normal and independent to each other and over time.

Thus, the observation equation linking Rt to the state (rt, ht+1,Xt) is appended to the

garch-VAR equations describing the state dynamics. We set the lag ofXt and ht at one.
13

13We tried other lag lengths, but the corresponding coefficients were insignificant.
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λ is the unconditional variance of the short term interest rate given by (α+β0)/(1−β1).
We estimate this system using the maximum likelihood method in which the likelihood

is the joint density of the sample (y1,y2, ..., yT ) (for details, see Appendix D).
14 A cursory

glance at the model-implied yields (Figure 3) indicates a good fit to the data.

Figure 3: Model-implied yields (in annualized rate in percent). These figures plot model-implied yields for 

the indicated maturities in annualized rate in percent. The dotted-lines show one-period-ahead in-sample 

forecasting, and the solid lines show the actual data. 
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The parameter estimates of our model are reported in Table 1. The estimated

conditional volatility of the short rate is highly persistent as the two coefficients in β1

sum up to near one (0.989). The price of risk coefficients corresponding to inflation and

real activity are significant, implying that the macro factors drive time-variation in risk

premia. The Taylor rule coefficients (μ0,μ1,μ2) have the right signs with the implied

long-run response to inflation (γ)15 near 1 (0.96)–we cannot reject the null hypothesis

that γ is equal to 1 and γ would increase with the exclusion of the recent global financial

crisis period. The estimated parameters describing inflation and real-activity (δ0, δ1,Φ)

14That is, the sample here is (y1, ..., yT ) = (r1,X1, R0; r2,X2, R1; ..., rT ,XT , RT−1). It would be

more natural to consider the sample (r1,X1, R1; r2, X2, R2; ..., rT , XT , RT ), but the usual factorization

argument can be more readily applied to the former. If the sample size T is large, the choice of the

sample would not matter for the point estimation.
15The implied long-run response to inflation γ can be calculated by γ = μ2[1, 0]

0/(1− μ1).
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appear reasonable. We will discuss robustness checks of these results in Section 4.2.

 

 

Table 1. Estimated coefficients. This table reports estimated coefficients in our 

macro-finance GARCH term-structure model. Numbers in italic indicate standard errors. 

Insignificant prices of  risk parameters are set to zero. The delta method is used to calculate 

the standard errors of  0  and 1 . 

 

4 Estimated Results

4.1 Estimation summary

The key results are as follows. First, our model-implied conditional volatility is con-

siderably time-varying and persistent. Figure 4 reports the dynamics of conditional

variance16 and shows that the model-implied conditional standard deviation increased

notably in the wake of the Volcker shock in the early 1980s (left panel) and tapered off

during the “Great Moderation.” The gradual decline halted in the early 2000s when the

16This GARCH process is stationary, as the absolute values of the corresponding polynomial roots

are all greater than one.
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Fed undertook expansionary policy deviating from the Taylor rule (Taylor 2009) but re-

sumed its decline when the FOMC made explicit policy announcements with statements

such as, “policy accommodation can be maintained for a considerable period” (August

2003) and “accommodative monetary policy stance will be removed at a measured pace”

(June 2004) (right panel). Then, the conditional volatility increased again during the

global financial crisis of late 2000s.

Figure 4: Model-implied conditional standard deviation of  the short rate (at an annualized rate in 

percent). The left panel shows the dynamics of  the conditional standard deviation of  the short rate for the 

entire sample period. The right panel enlarges the dynamics in recent years. 
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Figure 5. Factor weights against maturity. This figure plots the coefficients of  the yield equation against 

maturity (in months). A(n), B(n), C(n), and D(n) correspond to the constant term, the short-rate term, the 

conditional-variance term, and macro-variable term, respectively.  

 

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5
A(n)

0 10 20 30 40 50 60
0

0. 2

0. 4

0. 6

0. 8

1
B(n)

0 10 20 30 40 50 60
0

5

10

15

20
C(n)

0 10 20 30 40 50 60
0

0. 1

0. 2

0. 3

0. 4
D(n)

 

 

Inflation

Real activit y

Second, our results confirm that the conditional volatility of the short term interest

rate plays a significant role in determining yield curves in the presence of endogenous
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macro dynamics. Figure 5 shows how the yield-equation coefficients change against

maturity. The upward-sloping of An represents the shape of average yield curves, while

the downward slope of Bn implies that an increase in the short term interest rate has a

more positive impact on the shorter-end of yield curves, thereby reducing term spreads.

The shape of Cn implies that the conditional volatility increases the term spreads by

lifting the middle parts and longer-end of yield curves. It implies that one standard

deviation increase in h (≈ 0.09) increases the five-year bond yield by more than 150

basis points. The curves of Dn appear similar to the corresponding dynamics in the

existing macro-finance literature, and capture the positive impact of macro variables on

yield curves.

Third, in the absence of heteroskedasticity, the model performance deteriorates con-

siderably. Note that we can obtain the homoskedastic version of the model by simply

setting the coefficients of the ARCH term (α) and GARCH term (β1) in the GARCH

equation equal to zero and re-maximizing the log-likelihood function. Clearly, this ho-

moskedastic model with no other latent variables turns out to be overly inflexible to

provide a reasonable fit to the data, notably at the longer-end of yield curves as shown

in Figure 6.

Figure 6: Model-implied yields without heteroskedasticity. With no other latent variables, the model has a 

poor and unreasonable fit to the data, notably at the longer-end of yield curves. 
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4.2 Robustness checks

We now turn to some robustness checks of these basic results. The estimated parameters

describing inflation and real activity are robust to whether or not we include the term

structure with no-arbitrage conditions: they are comparable to on those based on a

multivariate GARCH model in the absense of the term structure (for description of

multivariate GARCH model, see Appendix E). The GARCH and ARCH coefficients in

the GARCH equation (3) are statistically significant as well.

We have considered additional measures of macro variables. Similar to Ang and

Piazessi (2003), we sort macro variables in two groups and extract the first principal

component of each group of variables separately. The first group consists of inflation

measures: CPI-U and the Producer Price Index (PPI) for finished goods. The second

group contains real activity measures: industrial production and employment. All vari-

ables are expressed in the year-on-year difference in logs of the original series. We use

only the first principal components in our analysis because they can explain about 92

percent of variance of real-activity variables and 95 percent of variance of inflation vari-

ables. The main results were robust to the inclusion of additional macro variables (the

corresponding estimated results are available upon request).

Lastly, we have estimated the model with a shorter sample period from January 1988

to December 2009, i.e., the period that covers Alan Greenspan’s tenure as Fed chairman.

The main results did not change, although the convergence of maximum likelihood

estimators became less smooth (the corresponding estimated results are available upon

request).

4.3 A case study: Around the time of the conundrum period

In the runup to the 2008 global financial crisis, US yield curves continued to bear-flatten,

despite the consecutive hikes in the FF rate and expanding economic activity. This

development, labeled a “conundrum” by then-Fed Chairman Alan Greenspan, poses a

challenge to the existing macro-finance models, because they tend to perform poorly

in explaining this period unless the term premiums fell beyond the range predicted by
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these models.

 

Figure 7. Model-implied yield curves (at an annualized rate in percent) The implied yield curves 

continued to bear-flatten during the low-yield period. 
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In our paper, on the other hand, the model-implied yield curves (Figure 7) suc-

cessfully generate the continued bear-flattening of yield curves between 2004-06. To

facilitate understanding of the mechanism behind this bear-flattening, Figure 8 reports

factor dynamics around this period: they are characterized by a decline in conditional

variance while the short term interest rate was rising and economic activity was ex-

panding. Keeping in mind the factor weights discussed in the previous paragraph, we

originally conjectured that it must have been the volatility channel that put downward

pressure on the longer rate during this period. The contribution of each term to the

model-implied yields, however, only partially confirms this conjecture (Figure 9, bottom

left panel), as there was a significant decline in model residuals with respect to longer-

maturity yield equations, particularly in 2002 (Figure 10). This suggests that there are

still unexplained factors accounting for the conundrum. In particular, a demand shift

caused by the increased demand for the long-maturity bonds by foreign central banks

and institutions might be an important underlying factor.
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Figure 8. Factor dynamics around the conundrum. These figures plot the dynamics of  state variables (i.e., 

the short rate, the conditional volatility of  the short rate, and macro variables between January 2002 and 

December 2009. 
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Figure 9. Contributions to the model-implied yields (in annualized rate in percent). These figures 

demonstrate the contribution to the model-implied yields by each term in the yield equation. Note that the sum 

of  each factor contribution is equal to the model-implied yields. 
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Figure 10. Model residuals for the yield equations (actual minus model-implied yields, at an annualized 

rate in percent). The model residuals of  3-month-maturity yield equation are more stable than those of  

longer-maturity yield equations during the conundrum period. The model residuals of 60-month yield equation 

dropped in 2002 and gradually turned from negative to positive values prior to the global financial crisis. 
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5 Conclusion

We analyzed a new aspect of monetary policy effects–the role of the policy shock

volatility or policy uncertainty–rather than the policy shock itself (i.e., its level or the

first moment, in contrast to our focus; the second moment), in accounting for yield

curve dynamics. Our estimation results confirmed that the newly included uncertainty

factor improved the empirical performance of our ATSM remarkably, greatly reducing

the unexplained portion or residuals, particularly at the longer-end of the yield curves.

Furthermore, the results indicated that the time-varying and persistent policy shocks

increase term spreads as they lift the middle-part or longer-end of the yield curves.

There may be, however, other factors not yet included that could further reveal the

unexplained portion of term premium dynamics or model residuals. For example, at

a time of unusual distress, if the Fed were to undertake extraordinary policy actions,

investors might lose their risk appetite, collectively switching to treasury bonds or other

risk-free assets. This sort of “flight to quality” driven by a demand shift could fully

offset the upward pressure on the interest rates arising from the elevated uncertainty as

discussed in this paper. Looking ahead, the impact of demand-side shifts (i.e., investors’

preference) on yield curves could be stressed more in the future research, particularly

focusing on the crisis experience.
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A Pricing kernel and the Risk-Neutral Measure

Assume the existence of an equivalent martingale measure (or risk-neutral measure) Q,

such that the price of any asset pt with no dividends at time t + 1 satisfies

pt = E
Q
t (exp(−rt)pt+1) ' EQt

µ
pt+1

1 + rt

¶
,
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where expectation is taken under the measure Q and −log(1+rt) = log(1+rt)−1 ' −rt.
Let the Radon-Nikodym derivative, which converts the risk-neutral measure to the data-

generating measure exploiting the Girsanov theorem, be denoted by ζt+1. Then, for any

random variable Zt+1, we have

E
Q
t Zt+1 = Et

µ
ζt+1
ζt
Zt+1

¶
. (14)

Condition 1 Assume ζt+1 follows the process described as,

ζt+1 = ζt exp

µ
ΩΣt+1et+1 − 1

2
ΩΣt+1Σ

0
t+1Ω

0
¶

EtΣt+1 = Σt+1,

where et is a vector of random variables that jointly follows N(0, 1) distribution and Σt+1

denotes a lower or upper triangular standard deviation matrix. Σt+1 can vary depending

on t while it needs to be known at period t.

Under the condition, we define the pricing kernel mt+1 as,

mt+1 ≡ exp(−rt)×
ζt+1
ζt
.

Using the kernel, the price of an asset without any dividend can be written as,

pt = Et (mt+1pt+1)

= Et

∙
exp(−rt)×

µ
ζt+1
ζt

¶
× pt+1

¸
= exp(−rt)EQ (pt+1) .

This clarifies the relationship between the pricing kernel and the risk-neutral measure.

As shown here, the pricing kernel effectively adjusts the measure in addition to the

discount effect arising from exp(−rt).

B Recursive Bond Prices

We can confirm that the n-period bond pricing formula in

pn+1t = Et
¡
mt+1p

n
t+1

¢
= Et

⎡⎣ exp(−rt +ΩtΣt+1et+1 − 1
2
ΩtΣt+1Σ

0
t+1Ω

0
t)

× exp(Ān + B̄nrt+1 + C̄nht+2 + D̄nXt+1)

⎤⎦
= exp(−rt + Ān − 1

2
ΩtΣt+1Σ

0
t+1Ω

0
t)

×Et
£
exp(ΩtΣt+1et+1 + B̄nrt+1 + C̄nht+2 + D̄nXt+1)

¤
.
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Plugging in the dynamics of Xt+1, rt+1, and ht+2 into the above gives

pn+1t = exp(−rt + Ān − 1
2
ΩtΣt+1Σ

0
t+1Ω

0
t)

×Et

⎡⎣exp
⎛⎝ ΩtΣt+1et+1 + B̄n

³
μ0 + μ1rt + μ2Xt +

p
ht+1zt+1 + μ2Σεt+1

´
+C̄nht+2 + D̄n (δ0 + δ1rt +ΦXt +Σεt+1)

⎞⎠⎤⎦
= exp

⎛⎝ −rt + Ān − 1
2
ΩtΣt+1Σ

0
t+1Ω

0
t + B̄n (μ0 + μ1rt +μ2Xt)

+D̄n (δ0 + δ1rt +ΦXt)

⎞⎠
×Et

⎡⎣exp
⎛⎝ ΩtΣt+1et+1 + B̄n

³p
ht+1zt+1 + μ2Σεt+1

´
+C̄nht+2 + D̄n (Σεt+1)

⎞⎠⎤⎦ .
At this point, we can spell out the C̄n(.) and ht+2(.) terms in the above as:

C̄nht+2 = C̄n
£
β0 + β1ht+1 + αz2t+1

¤
= β0C̄n + C̄nβ1ht+1 + C̄nαz

2
t+1,

where s1 and S are the selection vector and matrix, respectively. In the expectations

operator, rearranging the terms leaves:

⎡⎢⎢⎢⎢⎢⎢⎣exp
⎛⎜⎜⎜⎜⎜⎜⎝

ΩtΣt+1et+1

+B̄n

³p
ht+1zt+1 + μ2Σεt+1

´
+C̄nht+2

+D̄n (Σεt+1)

⎞⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ΩtΣt+1et+1

+B̄n
p
ht+1zt+1

+
¡
B̄nμ2 + D̄n

¢
Σεt+1

+β0C̄n + C̄nβ1ht+1

+C̄nαz
2
t+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Putting this back into the bond pricing formula leaves
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pn+1t = Et
¡
mt+1p

n
t+1

¢
= exp

⎛⎜⎜⎜⎝
−rt + Ān − 1

2
ΩtΣt+1Σ

0
t+1Ω

0
t + B̄n (μ0 + μ1rt + μ2Xt)

+D̄n (δ0 + δ1rt +ΦXt)

+β0C̄n + C̄nβ1ht+1

⎞⎟⎟⎟⎠

×Et

⎛⎜⎜⎜⎜⎜⎝exp
⎛⎜⎜⎜⎜⎜⎝

ΩtΣt+1et+1

+B̄n
p
ht+1zt+1 +

¡
B̄nμ2 + D̄n

¢| {z }
≡Hn

Σεt+1

+C̄nαz
2
t+1

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠

= exp

⎛⎜⎜⎜⎝
−rt + Ān − 1

2
ΩtΣt+1Σ

0
t+1Ω

0
t + B̄n (μ0 + μ1rt +μ2Xt)

+D̄n (δ0 + δ1rt +ΦXt)

+β0C̄n + C̄nβ1ht+1

⎞⎟⎟⎟⎠

×Et

⎛⎜⎜⎝exp
⎛⎜⎜⎝
⎡⎢⎢⎣ΩtΣt+1 + ³B̄npht+1 HnΣ

´
| {z }

≡Jn

⎤⎥⎥⎦ et+1 + C̄nαz2t+1
⎞⎟⎟⎠
⎞⎟⎟⎠ .

Now with the aid of proposition used in Heston and Nandi (2003), i.e., Et exp (azt+1) =

exp(a21/2), and Et exp
h
k (zt+1 − a)2

i
= exp

³
ka2

1−2k − 1
2
log (1− 2k)

´
, where z is i.i.d

standard normal, all t + 1 variables (zt+1, εt+1, z
2
t+1) can be taken out from the expec-

tations operators:

Et [exp ([ΩtΣt+1 + Jn] et+1)] = exp

∙
1

2

¡
ΩtΣt+1Σ

0
t+1Ω

0
t + JnJ

0
n + 2ΩtΣt+1J

0
n

¢¸

= exp

⎡⎢⎢⎢⎢⎢⎢⎣
1

2

⎛⎜⎜⎜⎜⎜⎜⎝
ΩtΣt+1Σ

0
t+1Ω

0
t + B̄

2
nht+1 +HnΣΣ

0H0
n

+2

⎛⎜⎜⎜⎝
ω0rB̄nht+1 + ω0rμ2ΣΣ

0H0
n

+HnΣΣ
0ω0 +HnΣΣ

0ω1rt

+HnΣΣ
0Ω̃1Xt

⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎦
Et
£
C̄nαz

2
t+1

¤
= exp

∙
−1
2
log
¡
1− 2C̄nα

¢¸
.

The bond price equation can finally be rewritten as

23



pn+1t = Et
¡
mt+1p

n
t+1

¢

= exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

+Ān + B̄nμ0 + β0C̄n + D̄nδ0

+1
2
HnΣΣ

0H0
n − 1

2
log
¡
1− 2C̄nα

¢
+ω0rμ2ΣΣ

0H0
n +HnΣΣ

0ω0

+
¡
B̄nμ1 + D̄nδ1 − 1 +HnΣΣ

0ω1
¢
rt

+
¡
C̄nβ1 +

1
2
B̄2n + ω0rB̄n

¢
ht+1

+
³
B̄nμ2 + D̄nΦ+HnΣΣ

0Ω̃1
´
Xt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

corresponding to equations (8) - (11).

C Data

Table AC-1. Summary Statistics of the Data

Mean Stdev Skew Kurt Lag 1 Lag 2 Lag 3
FF rate 5.523 3.384 1.181 5.011 0.987 0.965 0.942
3-month 5.120 2.908 0.999 4.552 0.985 0.966 0.948
12-month 5.506 2.898 0.834 3.932 0.986 0.968 0.952
36-month 5.884 2.761 0.840 3.664 0.990 0.976 0.965
60-month 6.106 2.670 0.872 3.515 0.991 0.980 0.971

CPI 1.625 1.200 1.329 4.871 0.991 0.976 0.959
Employment 0.758 0.913 -0.804 3.491 0.985 0.958 0.915

Note: Normal distribution has skewness of zero and kurtosis of 3.

AutocorrelationsCentral moments
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Table AC-2. Data sources

Variable Source

Federal funds rate Fed

Zero coupon bond yields (3, 12, 36, 60 month) 1/ CRSP US Treasury Database

 CPI-U, all items, seasonally adjusted (1982-84=100) Bureau of Labor Statistics

PPI for finished goods, seasonally adjusted (base year=1982) Bureau of Labor Statistics

Nonfarm payroll employment
Establishment Survey Data,
Bureau of Labor Statistics

Industrial production, major industry groups, seasonally
adjusted (2000=100)

FRB

1/ CRSP currently does not provide zero-coupon bond yield data longer than five years.

D The Log-Likelihood Function

In this appendix, we explain the derivation of the log likelihood function used in the

paper. Our likelihood function is different from that for the standard multivariate garch

model in the sense that the static yield equations are appended to the state dynamics.

In preparation for the following discussion, we summarize the model as follows.

yt = AY + Φ̃yt−1 + CY ht + Σ̃tut, (15)

ht = λ+ β1(ht−1 − λ) + α(z2t−1 − 1), (16)

where

yt = (rt,Xt, Rt−1)0 , ut = (zt, εt, εmt )
0 ,

λ = (α+ β0)/(1− β1),

Φ̃ =

⎡⎢⎢⎢⎣
μ0

δ0

A

μ1

δ1

B

μ2

Φ

D

0

0

0

⎤⎥⎥⎥⎦ , CY =
⎛⎜⎜⎜⎝
0

0

C

⎞⎟⎟⎟⎠ ,

Σ̃t =

⎛⎜⎜⎜⎝
√
ht μ2Σ 0

0 Σ 0

0 0 Σm

⎞⎟⎟⎟⎠ , μ̄2 = μ2Φ, μ̄1 = 1− μ2[1, 0]0/γ| {z }
μ1

+ μ2δ1

25



and zt, εt,and εmt are jointly normal and independent to each other and over time. The

elements in A,B,C, and D are given recursively in equations (8)− (11) in the text. We
denote the vector of parameters to be estimated as θ,

θ =
h
δ0, δ1,Φ,λ,β1,α,Σ,μ0, γ,μ2,Σ

m,Ω0,ω1, Ω̃1

i
.

We wish to describe the joint density of (yT , yT−1, ..., y1) given (y0, y−1, h0). (The

reason for conditioning the joint density with (y0, y−1, h0) will be explained later in

this appendix.) Note that the joint density of observations 1 through t conditioned on

y0, y−1,and h0 satisfies

f (yt, yt−1, ..., y1|y0, y−1, h0; θ) (17)

= f (yt−1, ..., y1|y0, y−1, h0; θ)

× f (yt|yt−1, ..., y0, y−1, h0; θ) ,

and through the usual sequential substitution, the joint density of (yT , yT−1, ..., y1) given

(y0, y−1, h0) satisfies

f (yT , yT−1, ..., y1|y0, y−1, h0; θ) (18)

=

TY
t=1

f (yt|yt−1, ..., y0, y−1, h0; θ) .

We are now ready to derive the conditional distribution in (18), i.e., f (yt|yt−1, ..., y0, y−1, h0; θ).
Since ut is i.i.d. standard normal, the distribution of ut conditioned on (yt−1, ..., y0, y−1, h0)

is

ut|yt−1, ..., y0, y−1, h0 ∼ N(0, I),

Note that by (15), u0 is a function of (y0, y−1, h0) and thus by (16), h1 is also a function

of (y0, y−1, h0). In the following period, u1 is a function of (y1, y0, y−1, h0) and h2 is also a

function of (y2,y0, y−1, h0). It follows that ut is a function of (yt, yt−1, ..., y0, y−1, h0) and

ht is a function of (yt−1, ..., y0, y−1, h0). Since ht is nonrandom given (yt−1, ..., y0, y−1, h0),

the distribution of yt conditioned on (yt−1, ..., y0, y−1, h0) is

yt|yt−1, ..., y0, y−1, h0
∼ N(AY + Φ̃yt−1 + CY ht, Σ̃tΣ̃0t).
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Therefore, the joint density of (yT , ..., y1) conditioned on (y0, y−1, h0) is given by

f (yT , yT−1, ..., y1|y0, y−1, h0; θ) (19)

= (2π)−T/2 |(Σ̃tΣ̃0t)−1|1/2

× exp
∙
(−1/2)

³
yt −AY − Φ̃yt−1 − CY ht

´0
(Σ̃tΣ̃

0
t)
−1
³
yt −AY − Φ̃yt−1 − CY ht

´¸
.

The conditional log likelihood is the log of the above expression, i.e.,

L (θ) = const− 1
2

TX
t=1

log |Σ̃tΣ̃0t|

− 1
2

TX
t=1

³
yt −AY − Φ̃yt−1 −CY ht

´0
(Σ̃tΣ̃

0
t)
−1
³
yt −AY − Φ̃yt−1 −CY ht

´
If the sample size T is large, the conditional maximum likelihood estimation would

be asymptotically the same as the maximum likelihood estimation that maximizes the

unconditional log likelihood, log f(yT , ..., y1).

Finally, we numerically maximize the conditional log-likelihood function, with the

initial value of h given by the sum of squared residuals of the short-rate dynamics based

on the low-inflation period of the 1950s.

E Estimating Macro Dynamics Without the Term Struc-

ture of Interest Rates

To see if our estimated parameters for macro dynamics lie within a reasonable range,

we estimate the macro dynamics given by (2) and report the estimated results. The

only difference between (2) and our macro-finance GARCH ATSM is that the former

excludes the term structure.

The log-likelihood function is given by

L(θ̃) = −1
2

TX
t=1

log(det(H̃t))− 1
2

TX
t=1

ε0tH̃
−1
t εt,

where θ is the vector of parameters to be estimated;

θ̃ = [δ0, δ1,Φ,λ,β1,α,Σ,μ0,μ1,μ2] .
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H is the covariance-variance matrix

H̃t =

⎡⎣ ht +μ2Σ(μ2Σ)
0 μ2ΣΣ

0

Σ(μ2Σ)
0 ΣΣ0

⎤⎦ ,
and ε is the error term in the model defined by:

εt+1 =

⎛⎝ rt+1

Xt+1

⎞⎠−
⎛⎝ μ0

δ0

⎞⎠−
⎛⎝ μ1

δ1

⎞⎠ rt −
⎛⎝ μ2

Φ

⎞⎠Xt.
The estimation results are reported in Table AE. The delta method is used to cal-

culate the standard errors of μ0 and μ1.
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